NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

FACILITATING RICH ACOUSTICAL ENVIRONMENTS
IN VIRTUAL WORLDS

by
Kenneth J. Hoag Sr.
September 1998

Thesis Advisor: Rudolph Darken
Second Reader: Russdll Storms

Approved for public release; distribution isunlimited

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1998 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Facilitating Rich Acoustical Environmentsin Virtual Worlds

6. AUTHOR(S)
Hoag Sr., Kenneth J.

8. PERFORMING ORGANIZATION REPORT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in thisthesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The visual aspect of virtual environments has advanced at arapid pace. The audio aspect, however, has not kept pace. Current
methods of building virtual models do not address the graphical and audio aspectsin an integrated fashion. Furthermore, graphical
programming tools have not addressed sound in a satisfactory manner.

As proof of concept, a modeling tool was developed to allow a user to build both the visual and the auditory environment
simultaneoudly. A rendering application was devel oped that would display and browse a graphical environment, an audio
environment, or a complete graphical/audio environment.

Thisthesis demonstrates that building both the auditory and the visual geometry simultaneously allows for rapid, easy devel opment
of both the visual and the auditory environment. Enhancements and recommendations to current software technol ogies and modeling
languages are introduced. New models to represent audio are introduced.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Virtual Audio, Virtual Environment, 3-D Audio, Spatialized Sound, Audio Environment 97
16. PRICE CODE
17. SECURITY 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
CLASSIFICATION OF REPORT | OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Sandard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution isunlimited

FACILITATING RICH ACOUSTICAL ENVIRONMENTS
IN VIRTUAL WORLDS

Kenneth J. Hoag Sr.
Captain, United States Marine Corps
B.S., University of Southwestern Louisiana, 1986

Submitted in partial fulfillment of the
regquirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 1998

Author:

Kenneth J. Hoag Sr.

Approved by:

Rudolph Darken, Thesis Advisor

Russdll Storms, Second Reader

Dan Boger, Chair
Department of Computer Science

ABSTRACT

The visual aspect of virtual environments has advanced at a rapid pace. The
audio aspect, however, has not kept pace. Current methods of building virtual models do
not address the graphical and audio aspects in an integrated fashion. Furthermore,
graphical programming tools have not addressed sound in a satisfactory manner.

As proof of concept, a modeling tool was developed to allow a user to build both
the visual and the auditory environment simultaneously. A rendering application was
developed that would display and browse a graphical environment, an audio
environment, or a complete graphical/audio environment.

This thesis demonstrates that building both the auditory and the visual geometry
simultaneoudly allows for rapid, easy development of both the visual and the auditory
environment. Enhancements and recommendations to current software technologies and
modeling languages are introduced. New models to represent audio are introduced.

Vi

TABLE OF CONTENTS

[, INTRODUCTION ...ttt ettt ettt sreesb e sb e e s b e e sb e e s beesbeesbeesbeesbeesbeesreesreenreenreens 1
AL IMOTIVATION. .ottt ettt a b sae s et s b e s ee s et et e saneeanesaneenneeare s 1
B. RESEARCH OBJIECTIVES........oioiieiieieee et 2
€. SCOPE ...ttt ettt b e bt b e E bt E e R R e R e R e R e R e eE e e R e e nR e e aRe e aEe e nReenReenreenreenreens 3
D. ASSUMPTIONS......cctteitieitteite ettt ettt b e bbbt bt bbb e b e b e ne e reereenre s 4
E. THESIS ORGANIZATIONoiiitiiiiiieiiee ettt n e e n e 4

[1. BACKGROUND......oitiitteitieitee sttt ettt ettt et e s b e s b e e st e e s beesb e e st e e sbeesbeesbeesbeesbeesbeesreenreenreens 7
A. FUNDAMENTALS OF SOUNDccctiiiiiiiitiiisiiesie sttt sne s s 7

T 1 (o TP TP PP PP 8
2. LOUONESS......cotieitiete ettt ettt ettt b e e bbbt b e bt bbbt Rt R E e r e e r e e n e ne e 8
T 11 1o T TP PP T PP PP PR 9
B. PSYCHOACOUSTICS.......oooiieitieiteeite ettt ettt ettt sb e b sr e sb e e sb e e sbe e sb e e sbeesreesreesreesreenreens 11
1. How dowehear Sound diffEreNCES?......cciiiiiiee e e 11
2. How doestheear hear the PIitCh?..........oo oo 11
3. HOW 0O WE OrganiZe SOUNGS?cuueiiiiieitii et e stee e tee ettt ettt et e e sbe e e sate e s abe e sbeeasbeeesaneesnneaaas 12
C. PRIMARY LOCALIZATION CUES........cccoitiiiiitieitiesiee sttt 13
D. SOUND DIFFUSIONoiiitiiitieitieiteestee sttt sttt sbeesbeesr e sbeesbeesbeesreesreesreesreesneesreenneens 15
E. VIRTUAL SOUNDooitiiiieiieitieitee sttt ettt ettt sttt sb e sbeesr e sreesbeesbeesbeesbeesbeesreesneesreenneens 16
F. AUDIO ENGINEERING........ceoitiiieitieitie ettt st sr e sr e sb e sr e sreesreesreenneen 17
G. DSPHARDWARE ..ottt ettt b e b e b b e b e s b e sb e e sb e e s be e ebe e sbeesaeesne e e e nnes 17
1. Audio Processor Features of the SGI INigO........eeoiiieiieiiieiiiie e 17
2. CrEALIVE LAIS. ..ottt r e enre e nreenre e 18
3. Aureal family Of SOUNT CAraS.........ceiiiiiiiiiiee et sne e 19
N« o 1= (< 1 o PP PPRPPR 20
H. WHAT ISIMPORTANT? ..ttt sttt sb e r e b e sbe e b e sb e e sreenreenreesreenreens 20
[11. REAL TIME SOUND/PREVIOUSWORKcceciiiiiiiiiiiiiie et 23
A. RELATED RESEARCH.... ..ottt 23
1. Implementing 3D sound into specific virtual environmMENtS..........cccoocueeieriiieenee e 23
2. Real-time SOUNA QENEIaLiONoiiiiiiiii ettt sttt e st e e e sbe e e saee e snneaan 24
B. DSPAPPLICATION PROGRAMMER SINTERFACES.........ccccoiieiieneenee e 25
L. DITECESOUNG......tietietieiteest ettt ettt ettt r bbbt bbb e e e r e e bt e b e e ane e n e e r e e re e neenre e 25
A N | b TP PR PP PPRURPPRRPRRRN 26
N DT PO P PP PPPORPPRRPRRTRN 26
A, ABD 2.0 iR R e R e R e R e R et b e e aR e e aR e e e R e e nRe e nhe e ne e e s 26
5. Environmental AUGIOIEAXoo ittt sreenree 27
6. SGIAUdIO LIBIarycooeiee ettt e rb e saee e b 27
C. FAMILIES OF MODELING AND RENDERING TOOLS........ccccoiiiiieiieneesiee e 28
1. CoryphaguS SOFtWAIE, INC.......c.eiiiuiieiiieiiee ettt sttt et e b e saee e sabe e sbeeeees 28
2. Paradigm SIMUIBLION, TNC.ooiuiieiiiieii ettt et e e sbe e e saee e sare e 28
3. Virtual Reality Modeling Language (VRML) ..ot 29
D. QUICK SYNOPSIS AND OPINIONcueoiieitieitieitienieesiesieesteesieesreesteesreesseesreesreesseesreesseesseesseens 30

IV, APPROAGCH ...ttt b et bt b e bbb e s b e nb e sb e b e e b n e nn e nnen 33
A. THE THREE STATE APPROACH......cci ittt e 33
B. THE APP-CULL-PLAY APPROACHooiiiiiiieiierteesteenee ettt nne e 35
C. AUDITORY MODELS........ocoiiiiieiieitie ettt st bbb sbe e nbe e b e sne e b e nnnennes 37

1. Aureflexion (auditory reflection) MOdEooeioii i 38
2. Audication (Auditory 10Cation) MOEcccoiiiiiiii e 38
D. CONCLUSION.....ctteitieitieiteestee sttt st st sttt sb e sre e sr e e sbeesbeesbeesbeesbeesbeeabeesbeesbeesbeesbeesbeesbeenreenreens 39

V. TMPLEMENTATION ..ottt sttt sb e bbb s b e b e sb e sbe e nbeenneesneenneennnas 41

A. SELECTING HARDWAREooiiiitieiieite ettt et ne e 41

Vil

B. SELECTING SOFTWARE.......ciiiiiiiiieiie ittt 43

L. ACOUSLICAl SEIVEY ...ttt ettt ettt e b e e bbb bbb e e n e e ne e neenr e 43

2 \Y Lo e (< [oo T 1o o IO RTOU PRSP 43

T G 410 = g 10T oo PR OURPUURRR 44

C. TYPEDERS. ...ttt b bbbt b ekt e b e bt sb e e he e b e be bt e ae et e sbe b e e e e 44
D. ACOUSTELIB ...ttt et bbb bbb bt bt et e s besb e s bt e b e sbesbe e e e e neas 47
E. GAUDIVIEW ...ttt bbb et b e bt s h e bt sb e s bt e ae e sbesbeebe et e sbesbe e e e neennas 49
Fo GAUDIFLY Lttt bbbt b e b bt e b e e bt e b he e ae e R b e b e e b e b e be e e e nnas 57
G. SUMMARY ettt bbbkt bt bt Re e R b b Re bR b e Rt e b b be e e e e 60
V1. DISCUSSION ...ttt b bt he e b b s b e e ae e b e sbesbeeaeesbesbeeae et e sbesbesanenbeneas 61
A. WHAT WOULD BE NECESSARY TO MAKE THIS A PRODUCTION MODEL?.........cccce..... 61

Lo ACOUSEELID ..t bbb et b bbb b e e e 61

2. GAUDIVIEW ...ttt bbbt b bt a bbbt et e b e e bt s b e e e et e sbesbe e e e b nnas 62

3. GAUDIFLY ettt ettt bbbt b bt h bR Rt b e bt b e e e b b sbe e e e nneneas 62

B. WHAT ISREALLY NEEDED?........ooitiiiieitiie ettt st n b b e sne e 63

Lo MOOEIENS. ...t b e bt bt e r e e E e e e b e b e re e 63

A (00 £-'0110011 0o PP OURPURRR 64
VIlI. CONCLUSIONSAND RECOMMENDATIONS ...ttt 65
AL IMODELING.....e ettt bbbt bt bt e s b s bt he et e ebeshe e e e ebesbeshe e e e sbesbesneenrenrens 65
B. PROGRAMMINGottt b et b e bt ae e b s bt b e et e besbesbe e b e sbesbe s e e neeneas 65
C. NODES/DATA TYPES . ..ottt bbbt b e sb e b se bbbt eae et e sbesbe e e e b nnas 66
D. FUTURE WORK ...ttt sttt sttt st bbb b e s he et e sbesbe et e sbesbeebe e b e sbesbe e e e neeseas 69
1. BUILD A GEOMETRY/AUDIO INTEGRATED MODELER IN JAVA ..ot 69

2. IMPLEMENT THE AUDIO ENVIRONMENT IN VRMLoooiiiiiiiiiieiere e 69

3. MORE PRECISE IMPLEMENTATIONS OF SOUNDS.......cccoiintitirieie st 70
LIST OF REFERENCES..........o ottt sttt b e st b e b e s ae bbb e e b e 73
BIBLIOGRAPHY ..ottt bbb bt he et bt bt e e e b e sb e e be e b e s bt s b e eaeenbesbesbe e e e b ee 77
INITIAL DISTRIBUTION LIST ..ottt sttt sttt b n et s besnn e e 81

viii

LIST OF FIGURES

FIgUre 12 A SOUNO WAVE. ...ttt ettt et ettt et e a e e e s abe e st e e et e e e ebe e e sabe e smbeesabeeenees 7
T [0 DA o €= o (U< o TosY AT RURRUPRTR 8
FIQUrE 32 AMPIITUTR ...ttt ettt ettt e h e e s ab e e st e e e be e e sbee e saeeesmbeesabeeenres 9
LT [0 = o T 0] = RO RTRUPRRIN 10
Figure 5: Interaural TIME DE @Y (ITD)eeeiieiiieieiie ettt ettt ettt saee e sabe e s be e s sbe e e saeeesnreaans 14
Figure 6: Interaural INtenSity DIffEreNCeooiiuiiiii e 15
Figure 7: SOUNM DITFUSION ...ttt ettt sh ettt bt e e sae e e sabe e s be e ebe e e saneesabeaans 16
Figure 8: Thethree states of asound in thereal WOrld.coooeiiii e 33
Figure 9: Thethree states of a sound as represented in avirtual WOorld.cccooeiiiiiiiin e 34
Figure 10: APP-CULL-DRAW process of graphical rendering...........cccooceeiiiiiiiiiiie e 35
Figure 11: APP-CULL-PLAY process of audio rendering.coooeeeiieeiieeiiee e 36
Figure 12: Integration of graphical and audio PrOCESSES........ccociiiiiiiiiie ettt 37
Figure 13: Relationships between Audio Models and the three states of sound.............ccoeviiiiiiiieeneene 39
Figure 14: File SEECHION BOX.. ..eiitiiiiiieiiieiee ettt ettt ettt e st e e e sbe e sae e e sabe e sabeeebe e e saneesaneaan 50
Figure 15: GAUDIEVIEW showing a simple room textured With WOOd.cccovveiiiiniiiiinie e 52
Figure 16: Head Node and SOUNT NOGE.ueiiiiiiiiieiie ettt ettt et et e b saee e snneean 53
Figure 17: GAUDIVIEW 1N GCHON. ..ottt ettt e b e saee e sabe e sbe e e be e e saneesnneaans 56
Figure 18: Screencapture Of GAUDIFLY ..ottt sae et e s be e saee e saneaan 60
Figure 19: Resolving the applicationS With FIQUIE@ 12...........oiiiiiiiii e 63

LIST OF TABLES

Table 1: Comparison of SOUNA Card FEBLUMNESccuieiiiiiiii ittt saee s 20
Table 2: TechNology REQUIFEMENTS.........ooiiiiiiii ettt ettt sb e ssbe et e et e e sbe e e saeeas 21
Table 3: CoOMPAriSON OF APIS..... ..ottt ettt et e e e sbe e e sabe e sabe e sbeeesreeesneeas 27
Table 4: ACOUSICEl MELEITAIS.......ccueeiieitiertieste et sr e sr e sre e sreesreenreen 45
TaDE5: ROOM SIIUCIUNE ...ttt ettt ettt r e b e sr e b e e sb e e sr e e s b e e s be e sbeesreenreenreenreenreens 45
TaDE6: HEBA SITUCLUIE ...ttt b et r e b e e sb e e s b e e s b e e sb e e nbeenreenreenreenreens 46
TaDE 7: SOUN SITUCIUNE......eeieeieet ettt b et b e e sr e e sb e e s b e e sb e e sbeesreenreenreenreenreens 46
Table 8: Preliminary AUdiO SEIUCLUIE...........oiiiiiiieieieie ettt ettt rbe e sbae e ssbe e sabe e s be e e sneeesaeeas 47
Table 9: Functionsimplemented in ACOUSTEIID. ... 48
Table 10: File DIialog COOR.....ccoueieiiie ettt ettt ettt e bt e et et e sbee e ssbe e sabe e ebeeesbeeesneeas 49
Table 11: COUE O CrEAIE A TO0Meiitieteeiteesteestee st e st e st e st e e st e st e e s bt e sb e e sbeesbeesbeesbeesbeesbeesbeesreesreesreenreenreens 51
Table 12: MOifYiNG @EEXLUIEcoiueie ettt ettt st e et e e sb e e e smbe e sabeesbe e e sbeeesneeas 52
Table 13: Loading a sound in GAUDIVIEW........cc..ii ittt sne s 55
Table 14: Codeto get the valuein aspecified fileld..........cccooiiiiiiii e 56
Table 15: Declaring the audio Structures in GAUDIFLYuiiiiiiiiiieieeee e 57
Table 16: Applying Viewer’s Coordinates to the Sound deviCe..........oooveeiieiiiiiiii e 58
Table 17: Command line parametersfor AUDIFLY ...ttt 58
Table 18: ModificationSto CMAIINE.Cooiieiieieree e s nre e 60
Table 19: Proposed ACOUSEICal Data TYPE....ccoueieieieiiiee e riee ettt ettt ettt sbee e ssbe e st e be e sbee e saeeas 67
Table 20: Proposed TeXTUrE NOUE.oi ittt ettt rb e sabe e sbe et e e sbe e e saeeas 67
Table 21: Sample code for a ceilling made Of CEIOLEXoi i 68
Table 22: Sample code fOr @ROOMoo bbbt b e e sbe e saee s 69

Xi

Xii

ACKNOWLEDGEMENTS

First and foremost | would like to thank my wife, Rachel, for the support she has
shown and the understanding she has displayed. For half of my life, you have been there
for me. Thanks for tolerating all of my pet projects, of which this thesisis the closest to
being completed. Thanks for asking me if | was putting in more work than the instructor
really required, because often | was too involved to see that | was overshooting the
requirements.

Second, | would like to thank my children, Kayleigh, Jordan, and Jamey. You
helped me on projects when | asked, rode your bikes with me so that | would have to run
faster, and helped me to keep my thinking fresh.

Dr. Darken, thanks for all of the help. | have s8ldom worked for anyone that
would tell me what they wanted, then let me go about accomplishing it. The non-
micromanagement was very productive. Thanks for letting me go out and experiment
with a little bit of everything. Can you believe, | actually stayed with a topic for more
than a few weeks?

Thanks to Major Russell Storms for being my second reader and one of the only
people around that could really get down into the weeds when discussing sound. [If you
had not started working on three-dimensional sound at NPS, who knows what | would
have worked on.

I'd also like to thank Scott Foster, Chief Technical Officer at Aureal
Semiconductor. Thanks for the afternoon you spent giving me a different perspective on
sound in general. | hope you don’t mind my using your three state model.

The NPSNRG has many bright people, and they are always willing to help.
Thanks to Kent Watsen for explaining things like the APP-CULL-DRAW process, and
scene graphs, and how many times did | ask you about them anyway? Howard Abrams,
your explanation of scene graph traversal was actually the turning point in my
understanding graphics programming. Thanks to John Locke for all of the models that
you built for us and for the teaching me the joy of debunking conspiracy theory. Special
thanks to Rosalie Johnson and Jmmy Liberato, two of the most patient and competent

support personnel | can imagine.

Xiii

Xiv

INTRODUCTION

A. MOTIVATION

Sound is a very important part of our perception of the world. The eyes perceive
a great amount of information; however, they can only take in information within their
field of view. If something happens behind, above, or below, or if we are visualy
concentrating on a single subject, our ears tell us when we need to look in a different
direction to experience different visual information; the visual and aura perception
systems are tightly integrated. At times, as with the sound of a gunshot or the screech of
tires, sound can evoke a reaction with or without visual stimulation.

The visual aspect of virtual reality has matured to the point of reasonable
believability. Images can jump out in three dimensions. As a user’s point of view
changes, the scene changes. As the environment changes, the user’s view changes. As
the sun sets, or atree falls, or an enemy assumes the prone position to ready itself for a
hasty ambush on a patral, the visual information presented to the user’s eyes changes
appropriately. All of this visual stimulation is informative to the user of the virtua
world, but isit enough? If the sun sets behind the user’ s back, how would the user know?
The user might notice a decrease in overall brightness, may recognize a reddish-orange
sky, or might even see shadows elongating. If a tree falls behind the user, how would the
user know? Visually, it would not be perceived unlessit fell into the field of view. If the
enemy correctly sets that ambush, how would it be discovered? If they have prepared
their ambush properly, the user would not notice them until they began firing, and even
then, it would not be visually noticed if the gunfire came from the behind the user. The
first scenario presents an example where visual may be all that is necessary. The second
and third scenarios, however, cry out for sound.

Sound can become important in a virtual environment (VE) for many reasons.
When an architect designs a building, a virtual mock-up of the building provides the
architect, and the architect’s client, an opportunity to walk through the building before it
isbuilt. When donein an immersive manner using a head-mounted-display (HMD), they

can see how the walkways ook, if the hallways are large enough, what the lighting will

look like, if the furniture will fit, etc. If the user could also hear the new building,
necessary design changes could be discovered before construction begins. Much
information about size and scale is best captured by sound.

The concept of “hearing” a room also applies to people wanting to re-decorate or
redesign aroom. An interior decorator could simply build a three-dimensional replica of
the room and apply appropriate textures to the walls. Carpeting, curtains, wall-coverings,
and other materials could be placed into the room. The decorator could then experiment
with different types of lighting and different arrangements of objects. The visual aspects
of these changes would be readily apparent. If the room also contains a virtual stereo,
public address system, piano, or even a modeled orator, the effects of the new decorations
could be heard as well as seen.

An acoustical engineer may also want to use a system such as that described
above. The acoustical engineer may want better or more accurate replication of the
sound of the room, and that engineer would probably desire a method of developing a
room that seamlessly integrated the construction of the visual space into the construction
of the aural space.

Recent work by Major Russell Storms at the Naval Postgraduate School (NPS)
has shown that the quality of sound has a direct effect on the perception of the graphics
being displayed in a virtual environment. [STOR98] Other recent work by Major John
Lawson at NPS shows that sound is strongly correlated to the fedling of immersion felt
by a user of avirtual environment. [LAWS98]

B. RESEARCH OBJECTIVES

If we accept the above as true, we must agree that sound is a necessary part of a
virtual environment. The next question is, “Why is sound not prevalent in virtual
environments?’. Sound is not prevalent in virtual environments because it is difficult to
implement, and it is especially difficult to implement correctly. Sound support for virtua
environments, however, is lacking in both the ability to generate sounds as well as the
ability to model/develop the aural virtual environment. This thesis is concerned with
making the integration of sound into virtual environments easer and more accurate. A
modeler should be able to implement sound and audio into a modd without needing

expertise as both a geometric modeler and an acoustic modeler. A programmer should be
able to implement the graphical and audio portions of a browser or modeler without
making redundant calls to the graphical and the audio hardware. The programmer should
not even need to know what type of audio hardware is present. Just as a graphical
programmer should not need to know if the graphics are rendered on a PC or an SGl, the
programmer should also not concern himself with questions about sound cards, or even if
sound devices will be present when the user runs the application.

Hardware advances, in the form of better sound cards with digital signa
processing (DSP) ahbility, are just over the horizon. To take full advantage of the
upcoming hardware advances, we need better methods of describing the aurd
environment.

Some prior work in sound for virtual environments concentrated on spatialization
of sound. Other work concentrated on psychoacoustics and the acoustical environment.
The objective of this research is to develop a method of representing audio, both
gpatialized sound and the acoustical environment, in such a manner that it integrates
seamlesdy into the graphical environment, in both the modeling and run-time domains.
Specifically, this research bridges the gap by addressing the following points:

Traditional model building is the creation of avisual modd. If audioisto
exist, it must also be created. Why are these two not built together?

The virtual environment developer generally does not built for a specific piece
of graphics hardware; instead, the program addresses a high-level application
interface that knows how to address various graphical hardware. If a
particular machine cannot support texturing, then the environment will be
displayed without textures. In asimilar vein, the virtual environment

devel oper should not need to build for any specific sound hardware.

C. SCOPE

The scope of this thesis is the development of a method of representing the
acoustical properties of a virtual environment. The representation must fit seamlessy
with the graphical development. This thesis will thoroughly describe a process for
acoustic moddling and rendering that is seamlesdy integrated into the geometric
modeling process. A proof of concept implementation is also presented but is not to be
considered a production system.

The proof of concept for thisthesiswill consist of the following:

A rudimentary graphical user interface (GUI) based modeling tool
A rudimentary audio rendering tool (demo)

This thesis does not address the following:
Real -time computation of inherent sounds (i.e. scratching, dropping, €tc)
Sonification
Sound rendering
A production version of software

D. ASSUMPTIONS

This thesis delves into the depths of acoustics and psychoacoustics. The thesis
also addresses graphical environments and virtual worlds. Although the gist of these
subjects is covered in the section 11| BACKGROUND, this research is better understood
with a greater understanding than a cursory overview can provide. If the background
section does not provide enough information for the reader to grasp the fundamental
concepts on which this thesis is based, Rossing’'s Science of Sound [ROSS90] covers
sound in a most thorough manner. Also, for a better understanding of the graphical
portion of virtual environments, the book Computer Graphics Principles and Practice
[FOLE97] is premiere.

In preparation of this research, a thorough literature review has been performed.
The results of this review have been instrumental in preparing this research. An

annotated list of referencesis contained in the Bibliography.

E. THESISORGANIZATION

This thesis is divided into seven Chapters. Chapter | introduces the topic with
motivation and overview. Chapter 11 provides background into audio and its principles.
Chapter 111 explores real time sound and other works related to this thesis. Chapter 1V
discusses the approach used in the development of the proof of concept. Chapter V
describes the implementation of the proof of concept. Chapter VI contains discussions
about why things were developed as they were and how well the proof-of-concept
satisfies the stated requirements. Chapter VIl reveals the thesis conclusions,

recommendations, and future work. The thesis is concluded with the List of References
and Bibliography.

. BACKGROUND

A. FUNDAMENTALS OF SOUND

When you throw a rock into the water, the water at the point of impact becomes
disturbed. Upon impact, the water will be pushed out of its place. Once the rock travels
down, the water will rush in to fill the void. The water will begin to move in a rhythmic
motion. From the point of impact, waves will develop, traveling away from the point of
impact in a rhythmic fashion. If the rock is tossed lightly, the waves have a small
amplitude; if it is thrown with more force, the waves will have greater amplitude. If the
rock is small, the waves will have a high frequency and be close together, while a large
rock will cause alower frequency wave that is more spread out. Now, let’s compare this
to a sound wave.

If you were to throw a book onto the floor, causing it to land flatly, the air at the
point of impact will become disturbed. The waves that are generated by the rhythmic
motion of the air are called sound waves. When sound waves reach the ear, they are
interpreted as sound. A sound waveis shown in Figure 1.

Sine X

10.00 —

wa N
AV VAR

e

{000 At M L L
-10.00 (=== H-mm—= > 10.0C

Figure 1: A Sound Wave.
The pitch of this sound wave is represented by one complete cycle of the wave.
Theloudnessiis represented in the amplitude of the wave.
When a sound wave reaches the ear, it has three main characteristics: frequency,
intensity, and harmonic structure. When sound waves are interpreted, their three main

characteristics are pitch, loudness, and timbre. The three characteristics of sound and

sound waves are so closdly interrelated that we must address them together even when
describing them separately.

1. Pitch

From an egocentric viewpoint, pitch is the auditory characteristic that people use
to order sounds on a musical scale. [WELC98] The pitch of a note is logarithmically
proportional to the frequency of a note. As the frequency of the sound rises, the pitch is
perceived to be higher, as depicted in Figure 2. A sound’s pitch can also be affected by
the sound’'s other characteristics. The loudness of the sound can affect the perceived
pitch; louder notes are generally percelved as higher notes, within a given range. The
complexity of the sound, determined by its harmonic structure, can also affect the way
the pitch is perceived.

Frequenc
ID.DD||\||||9||Q|\

T P
YRV VARV

T

Figure 2: Frequency
The dotted wave is the same wave from Figure 1. The wave represented by the
solid line has a frequency twice that of the first wave, represented by the dotted
line. Musically, the second note would be pitched one octave higher than the
first note.

2. L oudness

Loudness is the attribute of sound that enables us to order the sounds on a scale of
soft to loud. In agraph, loudness is represented by the wave' s amplitude. A loud note's
wave has a high amplitude. A soft note's wave has a small amplitude. Pitch, however,
can also affect the perceived loudness of the sound. Of notesin a given range, the higher
note is generally perceived as louder. When loudness is being considered, the more
complex soundsin a given range are usually perceived as louder sounds.

Amplitude

10.00 +——

T

{g.og o L L L
-10.00 {===== Komm= > 10.00

172sin(x)

- - sintx

Figure 3: Amplitude
The dotted wave is the same wave from Figure 1. The wave represented by the
solid lineis only half asloud as the first wave. The second wave would sound
much softer than thefirst wave.

3. Timbre

Timbre is the quality that alows us to distinguish one sound from another, and to
group sounds into related families or groupings. Timbre is sometimes referred to as
everything about a sound that is not pitch or loudness. [BEGA94] [ROSS90] Although
we do not have a complete mode for fully specifying timbre, we have defined two of its
most important characteristics, sharpness and compactness. The sharpness of the sound
relates to the energy concentration of frequency spectrum. Sounds with much energy in
the high end of the spectrum sound sharp, while sounds with more energy in the lower
end of the spectrum tend to sound muddy. The compactness of a sound is determined by
the distinction between the discrete harmonics of the tone as compared to the continuous
harmonics of noise.

Since timbre is not a well-defined attribute, an in-depth discussion of its
characteristics is appropriate.

A complex tone is a tone composed of more than one sine wave. The lowest
wave of the tone is called the fundamental frequency, or fundamental. The fundamental
is the pitch that we recognize when we hear the tone. The first partial, or first harmonic,
is the sine wave whose frequency is the same as the frequency of the complex tone.

The complex tone is also comprised of other sine waves called partials. The
second partial, or second harmonic, in a complex tone is twice the fundamental, or one
octave above the fundamental. The third partial is three times the fundamental, the fourth

partial is four times the fundamental, etc. The addition of the harmonics is what gives a
complex tone its unique sound.

By adding different harmonics, or changing the loudness of the harmonics, we can
alter the timbre of the sound. We can group the harmonics to get better control of the
timbre. The second harmonic is amost inaudible, but makes the sound fuller. The third
harmonic produces a blanketed sound, making the sound softer.

The lower harmonics, first through sixth, group themselves into even harmonics
(second, fourth, and sixth) and odd harmonics (third and fifth). The odd harmonics
produce a stopped or covered sound. The even harmonics produce a choral or singing
sound. A strong second and third will uncover the sound. A strong third and a strong
fifth give the sound an annoying, metallic color. A strong second, third, fourth, and fifth
produce a french-horn type sound.

The high harmonics, seventh and above, give the tone its edge. If the upper
harmonics do not overpower the fundamental, they reinforce it, giving it a strong attack.

Overpowering upper harmonics can make the sound raspy. [HAMM98]

Freguency

10.00 —

A f}\ LA LT A it
Fo 3 L\v/\ L\J/‘\ x} M\J/j

)

10,00 L L L
-10.00 (=== H=-mm= > 10.00

Sin(2r)/Z 4 sini3x) /3 +sinl4x]s4 +siniEn) /8

- - -sinix)

Figure4: Timbre
The dotted wave is the same wave from Figure 1. The wave represented by the
solid line has a much moreinteresting timbre. 1t is composed of the original
wave plus the next four partials.

10

B. PSYCHOACOUSTICS

1. How do we hear sound differ ences?

An important facet of our perception of sound is the relative difference between
sounds. |If a sound is played, then another sound is played, how close in pitch do those
two sounds need to be for the average person to recognize their pitches as different? This
characteristic is the just noticeable difference (JND). The JND for pitch varies depending
on where the pitch islocated on the spectrum. At low frequencies, changes of two to five
Hz are detectable when pitches are played consecutively. When pitches are played
simultaneoudly, the JND can range from 1-3 hertz (Hz) in the low frequencies. Gelfand
showed that the pitch JND is directly proportional to the frequency of the pitch.
[WELC98] [GELF81] The JND for loudness varies according to the loudness of the
original sound. For very soft sounds, a small increase in volume is recognizable. Asthe
initial loudness increases, the IND increases.

Masking is another factor in our perception of sound. Masking is the amount that
a threshold of audibility is raised by the presence of another sound. An example is road
noise masks the sound of a car stereo. When you pull off the interstate and come to a
stop, your stereo seems much louder. Masking tends to occur between sounds that are
close in frequency. Lower frequencies mask higher frequencies. Masking also occurs
when the audio signals from the two ears converge. For this reason, spatially locating
two voices into two distinct, separate locations usually makes both conversations
intelligible. [WOUD97]

2. How doestheear hear the pitch?

The basilar membrane is the part of the ear inside the cochlea that responds to and
converts sound waves into signals that the brain can interpret. The baslar membrane
contains approximately 10,000 small hairs that respond to sound waves, generating a
signal that the brain will receive. How that signal is generated is not known in fact, but
two theories have been advanced that attempt to answer this question.

Place Theory, developed by Georg Von Bekesy, states that different points on the
basilar membrane undergo maximum displacement as a function of the frequency of the

11

sound wave entering the ear. Each neuron, attached to a small hair, would represent a
particular pure frequency. In the case of complex tones, numerous neurons would be
stimulated, giving the signal complexity. For frequencies below 400Hz, however, the
entire basilar membrane is stimulated equally. This would seem to contradict the average
human’s ability to hear down to approximately 20 Hz. [WELC98B]

Tempora Theory hypothesizes that the basilar membrane moves up and down
with each sound wave. Each up or down motion causes the neuron to fire. The pattern of
neurons firing determines the pitch. The neuronsin this area cannot fire more than about
1000 times per second. With this theory, our hearing would be limited to approximately
1000 Hz, but the average human can hear frequencies up to 14,000 - 20,000 Hz.
[ALBE97]

An anomaly that neither of these theories addresses is that of the missing
fundamental. When a sound enters the ear, the complete sound, to include partials, is
processed. Schouten discovered in 1940 that people could make a correct pitch judgment
when the fundamental frequency was not present, if some of the upper partials were
present. The auditory system seemed to know what fundamental should have been
present with the partial. For this reason, when an environment contains masking noises, a
complex tone is easier to correctly interpret than a pure tone. [ALBE97]

3. How do we or ganize sounds?

When many sounds surround us, we do not generaly hear them as distinct,
unrelated phenomenon; instead, we tend to group sounds using both perceptual and
physical factors.

Similarity, or lack thereof, is a perceptual factor used to group sounds. Sounds
will often be grouped as a single source when they are similar in pitch, timbre, loudness,
or location. Sounds which occur close in time, i.e. two short beeps, will be assmilated
into groups. Sounds which occur in the same frequency range, like two whistle blasts,
are often grouped together. Dissmilar frequencies, like a shrill whistle and a tuba, tend
to not be grouped together. Whenever sounds change in pitch or loudness, if this change
issmooth it will usually be interpreted as the same sound source. If the pitch or loudness

changeis abrupt, the change will often be interpreted as a new sound source. Sounds that

12

are grouped together also tend to change in coherent ways. When the pitch changes, the
loudness should change in a consistent manner.

The physical factors of the sound are also important for grouping sounds. The
fundamental frequency of a sound is very important. If sounds of different fundamental
frequencies are played, the harmonics of the individual sounds will not be confused. If
the two sounds have the same fundamental frequency, the harmonics will merge, being
perceived as a single sound with a timbre different than either of the original sounds.

Sound location is aso important for grouping sounds. Sounds that originate from
similar locations in space tend to be percelved as sources. Sounds emanating from
dissmilar locations tend to be perceived as separate. The sound location factor
contributes to the Cocktail Party Effect [ARON92][WELC98], whereby a person can
listen to two conversations if they are located in different positions in space, but the same
conversations tend to be less comprehensi ble when they occur in the same place in space.

Rhythmic patterns tend to be perceived as a source. According to Deutsch,
rhythm is one of the most powerful physical factors of pattern recognition. [DEUTS80]
[WELC98A] When using complex tones, rhythmic gaps of only two milliseconds are
recognizable.

Rhythms can be developed usng many methods. [FRAI82] [WELC98] Intensity
accentuation is using an accented sound to begin a group. If every third sound has more
intensity than the other two, then those sounds will be perceived as a group of three
sounds. When playing smilar sounds, adding a long interval after every fourth sound
will cause the sounds to be perceived as groups of four. Groups of two, three, or four
seem to be most natural, while groups of five or more tend to be harder to recognize.

Listeners also use cultural knowledge of scale and key structures of music to
group sounds. Dewar, Cuddy, and Mewhort found that subjects could differentiate
between two patterns of tones if the first pattern all belonged to one scale and the second
pattern all belonged to one different scale. [DEWA77] [WELC98A]

C. PRIMARY LOCALIZATION CUES

Once a sound is created, it is affected by the world around it. The air affects the

sound’ s ability to travel. Obstacles cause portions or the entire wave to be reflected. Our

13

ears can detect all of these changes to the sound, and the changes have specific meanings
when interpreted by the brain. We must discuss this phenomenon to round out our
introduction of sound.

Sound travels at approximately 1100 feet per second. If a sound occurs ten feet
away, we will hear that sound in 1/110 of a second. If the difference between our earsis
one foot (to make the mathematics easier), let us see how long it takes for the sound to
reach each ear. Asshown in Figure 5, the sound source occurs 10 feet from the left ear,
and it occurs 10.73 feet from the right ear. The left ear will hear the sound in .00909
seconds, and the right ear will hear it in .00975 seconds. Our brain uses this information
to tedl us where, in a left/right area, a sound occurred. Thisis called the Interaural Time
Difference (ITD). [AURE9S]

Figure5: Interaural Time Delay (ITD)

Another effect that we use to locate a sound in the left/right plane is called the
Interaural Intensity Difference (I1D). As we can see by Figure 6, the head serves to
shadow the sound reaching theright ear. Asaresult, the intengity at the left ear is greater
than the intengity at the right ear. By combining the ITD and IID cues, we are able to
narrow the position of a sound. [AURE9S]

The third effect used to locate the sound is actually caused by the listener’s own
ear. The pinna, or the outer ear, filters the sound as it enters the ear canal. As a sound
moves in eevation, the spectral filtering of the pinnae changes. An identical sound
coming from two different elevations will have different timbres. In effect, the pinnae act

asvariablefilters. Aswe learn to hear, we learn how our pinnae affect the sounds we are

14

hearing. Mot listeners have learned to map the pinnae's spectral filtering to the sound’s
correct eevation.

N

N

Figure 6: Interaural Intensity Difference

The combination of ITD, 11D, and the pinnae's spectral filtering allow us to
precisdly locate a sound in three-dimensional space. [AURE9S]

D. SOUND DIFFUSION

Thefinal characteristic that we must cover isthe diffusion of sound in aroom. To
say that a sound is perfectly diffused in a room isto say that the sound’'s pressure is the
same at al pointsin the room at the sametime. Thisis neither achievable nor desirable;
however, without some diffusion, we would not hear sounds throughout the room.

The terms live and dead are terms often used to describe the amount of diffusion
inaroom. A qualitative term, liveness depends on the ratio of reflected sound to direct
sound. The higher the ratio, the more live theroom is. As one moves away from a sound
source, one perceives the liveness to rise; conversely, as one moves closer to a sound
source, one percelves the sound to be more dead.

Diffusion of a sound in a room can be affected by modifying the ways that sound
can be scattered. Irregularities in walls cause reflecting sounds to reflect in a more
scattered pattern than a smooth, polished wall. Chairs, lamps, and other objects, to

15

include people, scatter sound that comes into contact with them. Placing more objects
that scatter sounds will increase the liveliness of the room. [KNUD50]

Acoustically absorptive material, on the other hand, will lessen the amount of
reflected sound. When sound strikes acoustically absorptive material, most of the sound
is reflected. The unreflected sound, however, is absorbed and transferred into heat.
Adding a material such as celotex tile to a room will make the room more dead. These

concepts are shown in Figure 7.

O

Figure 7: Sound Diffusion
The sound is emanating from the top | eft corner of theroom. As the sound
strikes a surface, it is partially absorbed and partially reflected.

E. VIRTUAL SOUND

Real sounds occur in the real world when real objects cause other real objects to
vibrate. Virtual sounds, on the other hand, are sounds that are created by synthetic
methods. An eectronic keyboard could be considered creating virtual sounds. Playing a
Compact Disc (CD) or cassette tape would be a virtual sound, even though it is a
recreation of a real sound. For the purposes of virtual environments, we want to
concentrate on virtual sounds.

One of the advantageous aspects of virtual sounds, whether they are generated
(synthetic sounds) or recorded, is that they can be processed using standard audio post-

production techniques to give a three-dimensional quality.

16

F. AUDIO ENGINEERING

Using standard audio processing equipment, such as an echo or delay unit, echoes
and delays can be added to a sound. Using the distance and angle from the object to each
ear of the listener, we can calculate the time delay required for the sound to reach each
ear. Using the same distance and angle, we can calculate the appropriate sound pressure
level for each ear. If we are extremely industrious, we can also calculate the effect the
pinnae will produce. [See section Il. C.] Using this information, we can use audio delay
units, like the Rane AD 22 Audio Delay [RANE98A], and equalization units like the
Rane GE 60 Stereo Interpolating Constant-Q Equalizer [RANE98B], to alter the original
virtual sound, giving us a sound that appears to originate from the object’s location.

When performed in a modern post-production facility, like a recording studio, the
above mentioned scenario is not as difficult asit sounds. Even so, it is not a process that
happens in real-time. To accomplish something like this in real-time, we need to turn to
Digital Signal Processing (DSP) hardware.

G. DSP HARDWARE

The audio processor provides many features to support a variety of audio
applications. The following is an overview of the features a few popular audio

processors found on the market today:

1. Audio Processor Features of the SGI Indigo

a. General Features

Independent input and output sample rates

Simultaneous input and output of audio data to/from applications

Multiple applications sending and receiving audio data

Input audio from one of microphone, linein, or digital input

Output smultaneoudy to all of headphone/loudspeaker, line out, and digital
out

b. Digital Signal Processor

The original Indigo contains a Motorola 56001 Digital Signal Processor
(DSP). This processor is used to maintain real-time flow of audio data to and from the

17

MIPS R4000 processor, and to perform mixing operations between audio applications.
Indigo2 and Indy do not contain a dedicated DSP chip; instead, the operation of the audio
system is split between the HAL2 ASIC, HPC3 ASIC, and software running on the MIPS
CPU. [IRIS96]

C. Audio CPU Usage

As noted above, the Indigo2 and Indy no longer contain a dedicated DSP
chip. Thus, the impact of some Audio Library functions upon system performance has
changed. In particular, each audio port that remains open consumes a small but relatively
constant amount of the MIPS CPU. Output ports tend to be more expensive than input
ports, since they require the kernel to perform mixing on behalf of the application.
[IRIS96]

2. Creative Labs

Creative Labs Sound Blaster Livel™ is Creative Labs newest audio card. The
Sound Blaster Live! produces sound for up to four speakers, and when used with the
Environmental Audio Extensions (EAX) API, can route sound to Dolby 5.1 or MPEG-2
7.1 speaker configurations. This sound card contains the EMU10K1™ audio processor
chip. It provides real-time for three-dimensional sound placement, and many real-time
digital effects like reverb and pitch shifting. Live! accelerates Microsoft DirectSound®
and DirectSound3D®, and contains user-sdectable DSP modes for acoustical
environments such as Hall, Theater, Club, etc. [SBLI98A] Live! boasts an average noise
floor level of —120dB. [SBL198B]

a. General Features

Supports real-time digital effects like reverb, chorus, flange, pitch shifter or
distortion across any audio source

Capable of processing, mixing and positioning audio streams using up to 131
available hardware channels

Customizable effects architecture allows audio effects and channel control
Full digital mixer maintains al sound mixing in the digital domain,
eliminating noise from the signal

Full bass, treble, and effects controls available for all audio sources
64-voice polyphony with E-mu’s patented 8-point interpolation technol ogy
192-voice polyphony PCl wave-table synthesis

48 MIDI channéswith 128 GM & GS-compatible instruments and 10 drum
kits

18

Uses SoundFont® technology for user-definable wave-table sample sets;
includes 2MB, 4MB and 8MB sets

Load up to 32MB of samplesinto host memory for professional music
reproduction

b. Digital Signal Processor
E-mu Systems EMU10K 1 patented effects processor

3. Aureal family of sound cards

The Aureal family of sound cards specializes in three-dimensional sound. The
newest member of the family, the Vortex |1, offers silicon based processing of audio data.
It is capable of driving headphones, or speaker configurations of two to eight speakers.
The Vortex |l offers hardware based sound acceleration for A3D, Aureal’s proprietary
applications programmer’s interface (APl), and for DirectSound3D, Microsoft’s open
API. [AURE98B]

a. General Features

Hardware-based A3D and DirectSound3D engine (16 sources)
Hardware-based A3D 2.0 Wavetracing engine with wall reflections and
occlusions (64 sources)
320-voice DL S wavetable engine for DirectMusic and MIDI (64 hardware,
up to 256 software voices depending on CPU)
Hardware DirectSound engine (96 sources)
Optimized for headphone, 2-speaker, or multi-speaker (up to 8) playback
Hardware-based 10-band stereo graphics equalizer (96 dB Signal to Noise
Ratio)
- Legacy audio support in real-time DOS and DOS boxes
Hardware-based crosstalk cancellation
96 DMA channels
Windows 98/95 and NT 4.0 Drivers (WDM ready)
Full MIDI 1/O and DirectX gameport acceleration
SP/DIF output
Aureal Wavetracing™ Technology: real-time acoustic reflections, reverb, and
occlusion rendering.

b. Digital Signal Processor
Vortex 2 (Part No. AU8830)

19

4, Acoustetron

The Acoustetron |1 is a stand-alone 3D sound server system from Crystal River

Engineering, Inc., a subsidiary of Aureal. The Acoustetron 1l is a close predecessor of
the Vortex 11 and A3D sound. It consists of a 486D X4 PC host computer with four DSP
cards containing a Motorola DSP56001. The system performs real-time spatialization of

multiple real-time audio sources in three-dimensional space. When appropriately

configured, it includes the ahility to render four concurrent 3D sound sources with six

reflections each at 44kHz sampling rate. Furthermore, any or al of the six reflective

surfaces can be textured by applying a material to the surface. The surface can aso be

modified with an amplification value to further refine the acoustical environment.
[ACOU96]
Crystal River | Aureal Creative SGI
Engineering
Acoustetron I1 | Vortex Il SoundBlaster Live Indigo
M ax Samp| i ng 44.1kHz 48kHz 44kHz 48kHz
Rate
S/N >90dB 100dB
DSP Motorola E-mu Systems EMU10K 1
DSP56001
MIDI Yes Yes Yes Yes
3D Audio Capable | Yes Yes Yes Yes
Audio Texturing | Yes Yes No No
Speaker Output Headphone, Headphones, Headphones, 2/4 speaker 2/4/8
2 Speaker 2-8 speakers Mode, Dolby 5.1 capable Speaker
MPEG-2 7.1 Capable output
Wall Reflection Yes Yes No No
Occlusion Yes Yes No No
Effects Pitch shift Pitch Shift, Reverb | Reverb, chorus, flange, pitch
shift, distortion
Other 10 band graphic EQin
hardware
APIs supported CRE_TRON A3d, DirectSound, | DirectSound, DirecSound3D, | AL
DirecSound3D Environmental Audio

Table 1: Comparison of Sound Card Features

H. WHAT ISIMPORTANT?

Given the above, we now have a multiple-entrypoint question to address. The

question is, “ What isimportant?’. The question can be addressed in the following ways:

If I know the human performance requirements of my application, what do |

do?

20

If 1 have a hardware/budgeting constraint, what is the best performance | can
achieve?
The following table represents the above mentioned question:

Performance requirement Hardwar e requirement
1 No sound No additional gear
2 | System warning prompts Standard audio speaker supplied

with a current computer
3 Non-directional audio, toinclude | Sound card

sounds, speech, warnings Speakers or headphones
4 | Directional audio for single user, | Sound hardware with 3D
no headtracking capability
Headphones or speakers
5 | Directiona audio for single user, | Headtracking device
with headtracking Sound hardware with 3D

capability and fast, interactive
positional update
6 | Directional audio for multiple Multiple 3D capable devices

users with headphones
7 Directional audio for multiple Multiple 3D capable devices
users, with headtracking with headphones and

headtracking devices

Table 2: Technology Requirements

21

22

[Il. REAL TIME SOUND/PREVIOUS WORK

Now that the basics of sound have been discussed, let us delve into how sound is
represented in the virtual environment. First, we will look at previous work in three-
dimensional sound at NPS. Second, we will look at how sound is created in a three-
dimensional virtual environment. Third, we will look at some Application Programmer’s
Interfaces (API) that allow a three-dimensional virtual environment to address the sound
generation hardware. Finally, we will look at some current families of modeling and

rendering software.

A. RELATED RESEARCH

1. I mplementing 3D sound into specific virtual environments

U.S. Army Maor Russell Storms implemented a MIDI based sound server for
three-dimensional sound in NPSNET. This implementation took advantage of the cost
efficient sound generation MIDI hardware, and brought three-dimensional sound to
NPSNET at avery low cost. Thisthesis did not address the use of an aural environment
or aural geometry. [STOR95]

Integrating Realtime 3D Sound Into NPShet, by Marine Corps Captain Lloyd
Biggs, addressed the integration of three-dimensional sound produced from wav files
stored on a sound server. Thisthesis addressed a specific implementation of 3D sound in
an effective manner. It did not, however, address a method of building an aura
environment in which 3D sounds could exist. [BIGG96]

Hesham Fouad developed a Virtual Audio Server (VAS) for the dispatching and
scheduling of sounds. VAS implements techniques for managing overload conditions in
a sonic virtual environment. Real-time scheduling algorithms alow for graceful
degradation of sounds according to the algorithms set by the programmer. [FOUA97] In
the graphics world, VAS would correspond to the CULL section of the APP-CULL-
DRAW process. As such, it belongs in the audio rendering pipeline. The APP-CULL-
DRAW processis discussed in depth in the Approach, beginning on page 33.

23

The Hesinki University of Technology’'s Acoustics Laboratory and the
Teecommunication Software and Multimedia Laboratory have worked on the Digital
Interactive Virtual Acoustics (DIVA) project for many years. The am of DIVA isto
create both visual and aural illuson in virtua three-dimensional space where a person
can move around freely and interact with his’her environment. The main goal of DIVA
is to study real-time virtual audio in its many different forms, to include computational
modeling of room acoustics, physical modeling of musical instruments, spatialization and
auralization, and many others.

DIVA have produced outstanding applications such as the Virtual Orchestra,
where a human can, in real time, conduct an orchestra composed of computers that
physically model instrumentsin real time. Most recently, DIVA produced Marienkirche,
a visual and aura demonstration film. Marienkirche is a film rendered with 3D
StudioM ax and Lightscape software for the visual, and DIVA software for the aural.
The film accurately depicts walking through the cathedral of St. Marienkirche, a 13"
century gothic cathedral destroyed at the end of World War I1. [DIVA98] It is an
outstanding example of what all virtual environments should strive to imitate.

The DIVA project has produced outstanding work in 3D audio, but it has not
effectively tied the development of the audio environment to the development of the

visual environment.

2. Real-time sound generation

Timbre trees were introduced as a method of generating sound. Timbre trees
represent a sound as a tree composed of the mathematical functions that would create the
sound. By ingtantiating a timbre tree with the proper parameter variations, different
sounds can be created. Adjusting data values in a timbre tree can modify the sound
produced by the tree. Connecting multiple timbre trees, asin a collision of two objects,
could possibly create appropriate sounds for the collision of the two objects. [FOUA97]

Michad Casey, Machine Listening Group, Massachusetts I ngtitute of Technology,
developed Perceptual Audio Models (PAM), a program that encodes classes of sounds.
Instead of a standard sound sample, PAM determines the most important characteristics

of a sound, then saves that information. By combining the characteristics of a rubber

24

hammer with the characteristics of a bell, a user can synthesize the sound of a rubber
hammer striking abell. [BEAC97]

The Musical Instrument Digital Interface (MIDI) is a protocol for communicating
with musical instruments, to include sound synthesizers. MIDI is a low bandwidth
method of creating sounds on any standard PC sound card.

Sampling is the method of recording sounds to digital disk. Many people are
already accustomed to working with wav files on the PC. Once a sound is sampled, the
sound can be manipulated or played back. Sample playback, or playing a wav file, is
another method of creating sounds for a virtual environment.

Timbre trees, PAM, MIDI, and wav files are all methods for sound generation. In
an audio-equivalent of the APP-CULL-DRAW process, sound generation belongs in the
APP section. Although this is a very important topic, it is not within the scope of this
thesis.

B. DSP APPLICATION PROGRAMMER’SINTERFACES

Many flavors of sound producing hardware exist for both the PC and SGI. To
address the hardware, manufacturers supply software developers with a software
development kit (SDK). The SDK includes an Application Programmer’s Interface
(API), which includes the data types and function calls that address the hardware.

Many APIs exist, but only a few are common. The next section discusses the
major APIsthat exist for sound hardware.

1. DirectSound

The DirectSound and DirectSound3D APIs are Microsoft's APIs for sound in the
DirectX system. DirectSound isthe API for non-directional sound, while DirectSound3D
is the APl for three-dimensional sound. They require only a standard Microsoft
Windows compatible sound card. DirectSound addresses the audio in the same manner
that DirectX addresses the visual geometry. Sounds can be attached to visual geometry,
and when the geometry is moved the sound automatically moves with it. This is the
preferred method. DirectSound addresses the acoustical environment by predefining a

few acoustical environments. DirectSound has definitions for rooms and halls.

25

DirectSound did not, however, include specifications for acoustical absorption properties.
These absorption properties could be attached to a piece of geometry when the geometry
is textured. The room acoustics could then be calculated by adding the absorption
properties of the different objects in the room. This is the only part that Microsoft |eft
out. DirectSound is supported by all Microsoft Windows compatible sound cards.

2. A3D

A3D is a three-dimensional audio API from Aureal Semiconductor. A3D allows
for three-dimensional placement of sounds at any distance and position from the listener.
When run with an A3D compatible sound card (a requirement) it adds less than 5% CPU
usage on an Intd Pentium 166 with eight sounds playing. [AURE98C] A3D
accomplishes Distance modeling with atmospheric filtering and gain. All positioning
(Ieft/right, up/down, front/back) is accomplished using head related transfer functions
(HRTF). Occlusions are facilitated with gain, and when coupled with A3D 2.0 drivers,
material filtering isalso applied. Reflections are not addressed in A3D. [AURE98C]

3. A2D

A2D is a speed optimized, feature reduced version of A3D, designed to emulate
A3D in software. A2D alows A3D 2.0 applications to run on PC platforms that do not
have A3D hardware support. It uses gain for distance modeling and Front/Back
modeling. It uses ITD and 11D for left/right positioning. When coupled with A3D 2.0
drivers, it uses gain to modd occlusions. [AURE98C]

4. A3D 2.0

A3D 2.0 is Aureal Semiconductor’s most modern three-dimensional API. It
accomplishes distance modeling with atmospheric filtering and gain. All positioning
(Ieft/right, up/down, front/back) is accomplished using HRTF. Occlusions are facilitated
with gain and material filtering. Reflections are modeled using HRTF, reverb, and
material filters. A3D 2.0 also includes intelligent resource management, sound source
priorities, audio culling, room geometry culling, and reflection management. [AURE98C]

26

5. Environmental Audio/EAX

EAX isCreative Lab’'s extension to the original DirectSound API. Creative Lab’s
position is that programmers should not be locked into a proprietary API. Instead, the
sound cards should respond to a non-proprietary API. [SBLI98C] Creative Labs is
betting on Microsoft’s DirectX API.

6. SGI Audio Library

The SGI Audio Library (AL) is alow-level API for addressing a specific
set of hardware, specifically the SGI audio hardware. It was designed to enable multiple
programs to share the audio resources of the workstation, and programs written on any
SGI machine with audio can correctly execute on any SGI machine with audio capability.
[IRIS96]

The Audio Library provides three major capabilities:
input and output of digital audio data
control of the attributes of the digital audio data
control of physical parameters of the audio subsystem [IRIS96]

DirectSound3D A3D 2.0 EAX AL

Distance v
Modeling

L eft/Right
Positioning

Positioning

N N N

v
Front/Back v
v

Elevation
Positioning

Occlusion

Y N N N S

Reflection

Table 3: Comparison of APIs

Although the API in itsdf is not the focus of this thesis, a look at the APIs gives
us a feeling of what can be accomplished and how it can be done. As Table 3 illustrates,
the A3D API addresses the acoustical environment very strongly. The DirectSound3D
and DirectX AP address the incorporation of sound into the graphical environment better
than the other APIs. An overarching APl should be developed so that a programmer
needs to write only one set of code. If the calls are not supported by the hardware/API
installed on the machine, then those calls are either interpreted or dropped.

27

C. FAMILIES OF MODELING AND RENDERING TOOLS

Many commercial companies develop applications for modeling and for the
rendering of the models. Coryphaeus Software, Inc, and Paradigm Simulation, Inc, are
two companies that develop families of tools for modeling and rendering processes. By
developing families of tools, the transition between the modeling phase and the rendering

phase is ssimple because of the integration of the products.

1. Coryphaeus Software, Inc.

Coryphaeus Software, Inc., develops modeling and rendering tools for the SGI.
Designer’s Workbench™ (DWB) is an interactive database modeler with GUI. It allows
a user to develop geometry, add texture, add materials, colors, and sound. It addresses
sound down to the Audication model. [The Audication mode is proposed by this thes's,
See page 38.]

EasyScene™ is a graphical rendering program designed to load model databases
built with DWB or many other modeling tools. It alows the user to walk through the
database, performs collision detection, renders fog, 3D spatialized sound, and most other
options found in a graphical rendering program. As with DWB, EasyScene addresses
sound down to the Audication model, but does not address the Aureflexion model. [The
Aureflexion model is proposed by thisthesis, see page 38.]

2. Paradigm Simulation, Inc.

Paradigm Simulation Inc. has built a complete family of modeling and rendering
tools that alow rapid prototyping, building, editing, and rendering of sophisticated
environments and applications quickly and easily.

Vega™, the simulation development tool for geometry, allows for the
development of advanced three-dimensional geometry, to include lighting models and
special effects. It is based on SGI's Performer™, so it is an extendable tool. If more
power is needed, programmers can access a C language application programmers

interface (API) to access Performer, OpenGL ™, and Paradigm’ s graphics libraries.

28

AudioWorks2™ is Paradigm Simulations audio environment development
software. AudioWorks2 supports full three-dimensional audio rendering using Crystal
River Engineering's (CRE) Acoustetron II. AudioWorks2 allows a user to develop an
acoustical environment, to include both the Aureflection and Audication model, and to
hear that environment in real time. Using AWLynX, the sounds can be connected to
sounds in the graphical world, so that as transforms are applied to geometry, the same
transforms are applied to the sounds attached to the geometry.

Both Vega™ and AudioWorks2™ use the LynX graphical user interface. LynX
provides the ability to attach audio objects to visual objects and to duplicate most of the
functions found in the API. Using Vega-Audio, some classes in Vega and AudioWorks2
can share objects, allowing a single object to be created with both visual and aural
attributes.

Paradigm Simulations has correctly addressed both the Awudication and
Aureflection models, however, they have chosen to separate the visual world from the
audio world for development purposes. This allows each devel oper to concentrate on one
side of the puzzle without concern for the other. This works well for programming teams
having at least one member with a strong background in acoustics. For programmers
without extensive expertisein audio, thisadds aleve of difficulty that is unnecessary.

3. Virtual Reality M odeling Language (VRML)

VRML is not actually an API, but it is a very useful, cost-effective method of
implementing virtual reality over the Internet. VRML has the ability to bring virtua
reality to the common man. Because of the probability of VRML existing in large
guantities on the Internet for quite sometime, VRML should be considered in this survey.

VRML has chosen to model sound from the perspective of sound generation and
sound reception. [Generation and reception are discussed in depth in Chapter IV
APPROACH, beginning on page 33.] A sound node can emit a sound. That sound can
be spatialized, if the hardware is able. The sound can be somewhat directionalized in
elliptical patterns. The sounds can be prioritized, so the web browser knows which

soundsto drop if it cannot reproduce everything. Sounds are easily attached to geometry,

29

and when the geometry moves, the sounds move. From the perspective of the sound
emission, VRML has done the best job at present.

The acoustical environment [or propogation, see page 33] is not represented in
VRML. Although a sound can be spatialized, if the sound is emitted in a small room
with walls of wood, the echoes of the sound interacting with the wood are not
represented. Furthermore, if the walls of the room were covered with heavy drapes, the
sound level in the room would not be affected.

D. QUICK SYNOPSISAND OPINION

After reading the preceding chapters, the following points should be clear:

Audio isanecessary, or at least very useful part of avirtual environment.
Research into three-dimensional audio rendering is advancing it at a rapid
pace.

Three-dimensional audio APIs address sound at alow level.

Families of modeling/rendering tools work well for visual aspects but not
necessarily for aural.

From the research performed, it is apparent that the virtual graphical world has
matured more quickly than the virtual audio world. Virtual environments represent the
graphics of the environment very well. The graphical world has developed methods for
representing imagery (polygons, lines, textures) that work very well for imagery, and
these methods have also worked very well for audio, when they have been applied.

It is apparent that when developing a three-dimensional virtual environment, the
audio portion of the environment is usually lacking due to difficulties in implementation.
It is smply hard to do; consequently, it is often left out atogether. Furthermore,
understanding the complexities of a three-dimensional environment is not aways
possessed by computer programmers. We should develop a method that alows a
programmer/modeler to develop the audio properties of the environment seamlessy
while developing the graphical environment. It should be integrated, and it should be
easy to implement and understand.

In much the same way that Iris Performer and Open Inventor™ alow a
programmer to write high level code to perform low level OpenGL graphics functions, a
method should be developed to allow audio programming to be performed at a high level.

30

Furthermore, when geometric pieces and audio pieces are connected, as in a pfDCS
(Dynamic Coordinate System) in Performer, a single call to move the DCS should move
the geometry and the audio. Thisis discussed in more depth as the Audication model on
page 38. Also, asingle cal to texture a polygon should not only apply the texture to the
piece of geometry, but it should also apply acoustical properties aswell. Thisis discussed
in more depth as the Aureflexion model on page 38.

31

32

V. APPROACH

A. THE THREE STATE APPROACH

Sound in a real world environment can be considered to exist in three separate
states; generation, propagation, or reception, as shown in Figure 8. [FOST98] The
generation state exists at the moment the sound is created — it involves sound emission.
For an impulse sound, like a hammer striking a bell, this state is instantaneous; for a
longer sound, such as an engine running, this state exists for a period of time. Once the
sound has been created, it interacts with the environment, bouncing off some objects and
being absorbed by others — this is the propagation state where acoustics are considered.
Finally, when the sound reaches the listener’s ears, the ears receive the sound for further

processing as it goes to the brain — this is the reception state, or where the sound is

localized in space.
Timbre Qualities Acoustic Qualities Spatial Qualities
‘What does the sound sound like? ‘What does the sound sound like ‘What does the sound sound like
in fifs environment? in this environment
from here?
Generation Propagation Reception
Perzon speaking Reflections The eardmum
Engine mnning Occlusions receives the sound
Book lutting floer Echoes
Masking

Figure 8: Thethree states of a sound in the real world.

Much like sound in the real world, sound in a virtual world also can be considered
to exist in these three dtates, as depicted in Figure 9. |Initialy, the sound must be
generated. MIDI and wav files are methods of playing back a recorded sound. Timbre

33

trees and sound modeling are methods of generating sounds on the fly in the virtual
world. Either of these methods takes place in the application, or APP, portion of a virtual
environment. [Refer to section on Virtual Sound, page 16].

Timbre Qualities Acoustic Qualities Spatial Qualities
What does the sound sound like? What does the sound sound like What does the sound sound like
in #his environment? in thig environment
Jrom here?
Generation Propagation Reception
MIDI Reflections HETF
wav Occlusions 11D
Modeled Sound ITD
Example: Example: Example:
the difference between the difference between the difference between
abell and a horn abell in an anditorium versus abell to my left versus

abell 1n acloset abell to my nght

Figure 9: Thethree states of a sound as represented in a virtual world.

Once the sound is created, it must interact with the virtual environment. If the
environment contains any objects, the sound must be reflected from those objects. [Refer
to section on Sound Diffusion, page 15] Any large object directly between the sound
source and listener would occlude, or lessen, the sound that the listener hears. Effects
such as JND and masking [page 11] would also be applied. The intensities of all of the
reflections would be calculated, and those that were loud enough would be sent to the
sound rendering hardware. The sounds that would not be heard by the listener would be
culled out, or not sent to the sound rendering hardware. Graphics programming has a
similar construct called the CULL process, which gathers all polygons that will be drawn.
If propagation is not considered, the sound exists only in an anechoic environment, which
isnot a natural state.

Finaly, the render, or PLAY, process would take place. In graphics
programming, only the polygons that could be seen by the user would be drawn on the
screen — this is the DRAW process. In the audio process, only the sounds that can be

heard would be played. In addition to playing the sounds, the PLAY process would

apply HRTF, or some other method, to spatialize the sounds [as discussed in PRIMARY
LOCALIZATION CUES beginning on page 13].

Application of spatialization depends upon hardware capabilities and fidelity
requirements. For extremely high fiddity, all sounds, to include reflections, would be
gpatialized. For less accuracy, the original sound could be spatialized and reverb could
be applied to approximate the environment. As fidelity requirements diminish or
hardware capabilities become overtaxed, spatialization of sounds can be degraded.

B. THE APP-CULL-PLAY APPROACH

After investigating the families of modeing/rendering applications, an
observation was noticed. Polygon modeling occurs before the real-time, graphics
rendering process. A mode is built from one or more polygons, or even from one or
more other models. As these polygons and models are added, the graphical environment
is constructed. The output of the modeling processis afile that describes the mode or the

environment.
Pre Run-Time Run-Time
Polygon Modeling Simulation Rendering
APP process —*» CULL and DRAW
processes

Figure 10: APP-CULL-DRAW process of graphical rendering.
The modédl's file is next imported into a real-time system. This system reads the
model and develops the environment. This environment is then rendered for the user to
see. Thisrendering program contains sections that run the application (real-time system),

35

cull the polygons, and draw the polygons. This process is the APP-CULL-DRAW
process, and it is depicted graphically in Figure 10.

Audio modding also occurs as a dtep-time process, before the run-time
environment can be run. Acoustical primitives, such as acoustical textures to reflect and
to occlude sounds are added to an acoustical environment. As these acoustica
characteristics are added, the auditory environment is constructed. The output of the
modeling process is a file that describes either a sound or the acoustical properties of
some object, called the audio geometry.

Pre Run-Time Run-Time
Acoustical Modeling Simulation 3D Sound Rendering
—_
APP process CULL and PLAY processes

Figure 11: APP-CULL-PLAY process of audio rendering.

The audio modd's file is next imported into areal-time system. This system reads
the model and devel ops the audio environment. This audio smulation loads a specified
environment and any necessary sounds. The audio environment is then rendered for the
listener to hear. This audio rendering program contains sections that generate sounds
(real-time system), cull all of the audible sounds, and play the sounds via speakers,
headphones, or some other device. This process is the APP-CULL-PLAY process, and it
isdepicted graphically in Figure 11.

Figure 12 suggests a new method of developing and rendering environments. It
combines both the visual and audio modeling process so that as one is being devel oped,
the other is developed with little to no additional work. When the run-time system
executes, it surveys both the graphical and the audio hardware, then builds the
environment for whatever the given hardware will support. Finally, the APP-CULL-
DRAW and APP-CULL-PLAY processes are integrated.

36

Pre Run-Time Run-Tmme

Polygon . .
Modeling Real-Time - Rendering
Acoustical Aural 3D Sound
- 4’- .
Modeling Environment Rendering

Figure 12: Integration of graphical and audio processes.

Another important aspect that was recognized is that the current APIs for
addressing graphical hardware contain only eementary sound-related functions,
specifically only functions for sound generation and reception (refer again to Figure 8
and Figure 9). Also noticed was the lack of graphical geometry support in the sound
APIs. To remedy this, an overarching API is needed that addresses the graphics in a
manner consistent with any competitive graphical APl and addresses sound in all three of
the sound phases. This should include the Audication and Aureflexion models detailed
bel ow.

C. AUDITORY MODELS

In graphics programming, many models exist. An illumination model expresses
“the factors determining a surface's color at a given point” [FOLE9QO]. The camera
model allows us to specify the way the objects will be viewed. Texture mapping allows
usto paste a “picture” onto a polygon to make the polygon look more real.

In the same manner, the audio environment needs models. A proposed set of
models is discussed below.

37

1. Aureflexion (auditory reflection) model

The aureflexion model is used when smulating the acoustics of a room. This
model does not render the location of an object in 3D space, per se. It uses the locations
of al of the objects located in the three-dimensional space. It uses the acoustica
properties of al of the objects in the three-dimensional space to calculate the actual sound
that should reach each ear. This mode requires an APP-CULL-PLAY process, and it is
the PLAY portion of that process. This modd uses the DSPs in the same manner that the
graphical models use the graphical pipeline.

The aureflexion modd is implemented in two ways. The first is acoustical ray
tracing. Each object in the three-dimensional space is textured. The audio pipeline
performs ray tracing to calculate the sound reflections as they should be received by the
ear. This method relies heavily on DSPs or extremely fast main processors to perform
something close to acoustical ray tracing.

The second method is a reverberation model. This is a close approximation to
what the ear should hear. The acoustical properties of the three-dimensional space are
calculated, and aloudness reduction is calculated. The acoustical properties are also used
to calculate the sound decay of the room. Finally, the acoustical properties are used to
calculate the reverberation time of the room. The reverberation time can be calculated
for the full frequency spectrum, or it can be calculated for specific frequency bands for a
more accurate implementation. The sound hardware would then apply the calculated
reverb to the sound. Thiswould approximate the reflected sound in a room.

2. Audication (Auditory location) Model

The audication modd is used to represent the location of a sound in the three-
dimensiona space. The audication model uses HRTF, 1ID/ITD, or any other acceptable
method to represent the sound in a specific location. The Auditory location model can be
used in conjunction with the aureflexion moddl, but thisis not a requirement.

Figure 13 demonstrates the relationships between the two proposed audio models
and the three states of a sound, as detailed on page 33. Notice that no modd is presented
for the generation state; that is beyond the scope of thisthess.

38

Timbre Qualities
What does the sound sound like?

Acoustic Qualities
What does the sound sound like
in ##ds environment?

Spatial Qualities
What does the sound sound like
in this environment
Jfrom here?

Generation Propagation Reception
MIDI Reflections HETF
wav Oeclusions 11D
Modeled 3 ound
Example: Example:

the difference between
abell and a horn

the difference between
abell in an auditorium versus
abell in acloset

the difference between
a bell to my left versus
abell to my right

AUREFLEXION
MODEL

AUDICATION
MODEL

Figure 13: Relationships between Audio Modds and the three states of sound.

D. CONCLUSION

This approach provides an opportunity to simplify the tasks of the modeler and
the programmer. First, by combining the modd building, the modeler needs expertise in
either graphics or audio, but is not required to be an expert in both. Second, since the
environment builder is not required to build for a specific set of hardware, concentration
is placed on the environment, not the machinery that will run the environment. Finaly,
by marrying the geometrical and auditory programming calls, redundancy is reduced and
consequently the likelihood for errorsis reduced.

39

40

V. IMPLEMENTATION

Chapter 1V described the integration of the visual and audio portions of virtua
environments that should occur in a production application. For this thesis, however,
only a proof of concept will be implemented. As proof of concept, it was decided to
implement a modeling tool capable of building both the visual environment (geometry)
and the auditory environment (sound and geometry) in an integrated manner. The
modeler must at a minimum be able to create a room, color the room, add a texture to the
walls of the room, add a single sound, and move that sound within the room. The
modeler must be run on a machine that can render smplistic geometric primitives with
textures, and render three-dimensional sound with the ability to texture the sound.

Once it is proven that the environment can be easily developed using this
visual/auditory modeer, it must be proven that such a modd can be easily run with or
without sound in a smple rendering program. The rendering program should load the
visual geometry, the audio geometry, or both. It should load other models that may or
may not have sounds attached to them. Once the models (visual and audio) have been
loaded, the renderer should allow a user to peruse the environment. As the user moves
through the environment, the audio display and the visual display should change
appropriately.

To accomplish the above, a cursory review of hardware for both sound display
devices and graphical rendering machines was accomplished. In reviewing the hardware,
consideration was given to both technical issues (which device is best), resource issues (a
machin€e’'s rendering capability vs. its availability), and longevity issues (will this be
around two years from now?).

A. SELECTING HARDWARE

To render the graphics, there was a choice of three basic systems. The IBM PC
systems available had the ability to render some graphics, but were not outfitted with
strong 3D Graphics cards. There were also only three PCs available to be shared among
more than a half dozen students, so availability was questionable. The PCs were outfitted

with SoundBlaster AWE 32 sound cards. These sound cards were capable of rendering

41

3D audio, but audio texturing was not available on the sound cards. Although the PC
showed much potential for future work, it was determined that anything developed
should be applicable for both the PC and SGI hardware. For these reasons, the PC
systems were less than desirable for this project.

The available SGI computers had strong rendering capability; all were sufficient
for a small rendering project. Only the SGI Onyx Infinite Reality (IR) workstations are
capable of rendering very complex textured geometry. Since these had the most
rendering power, they were heavily used by most of the students. An SGI Indigo2 was
available and capable of running textured graphics on a smaller scale than the IR
workstations; consequently, it was chosen for graphics rendering.

This machine has the following hardware:

Iris Audio Processor: version A2 revision 0.1.0

1 100 MHZ 1P22 Processor

FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0
CPU: MIPS R4000 Processor Chip Revision: 3.0

On-board serial ports. 2

On-board bi-directional paralléel port

Data cache size: 8 Kbytes

Instruction cache size: 8 Kbytes

Secondary unified instruction/data cache size: 1 Mbyte on Processor 0
Main memory size: 64 Mbytes

EISA bus: adapter O

Integral Ethernet: ecO, version 1

Integral SCSI controller 1: Version WD33C93B, revision D
CDROM: unit 4 on SCS| controller 1

Integral SCSI controller O: Version WD33C93B, revision D
Disk drive: unit 1 on SCSI controller O

Graphics board: GU1-Extreme

For acoustical rendering, the SGI machines were not as strong as needed. The
SGI machines had the processing power to calculate the correct sounds in both HRTF and
reflections, but this would require developing libraries that would calculate the sounds.
The actual coding of these functionsis not within the scope of thisthesis.

The Acoustetron |1 can render up to sixteen 3D sounds, or four 3D sounds with
room acoustics. It comes with an APl that allows easy development of code to interact

42

with it. It was also unused, giving easy access for this research. The Acoustetron Il has
the following characterigtics:

4 DSP signal-processing cards

Acoustetron |1 Client Software Library and Demos

8 concurrent 3D sources at 44kHz samplerate

16 concurrent 3D sources at 22kHz samplerate

4 concurrent 3D sources with 6 reflections at 44kHz sample rate
pitch shift control for all sources

Maximum system update rate: 44Hz

B. SELECTING SOFTWARE

1. Acoustical Server

The Acoustetron 11 came with a software base and demo software. 1t was decided
to develop an audio server to communicate between the graphical and audio portions of
the project. Initially development began on an audio server that communicated via
sockets with the main application. The acoustical server is based heavily upon CRE’s
audioClient program and the CRE_TRON Function Reference. [ACOU9] The
acoustical server isnamed Acoustelib.

2. Modeling Tool

Open Inventor [WERN94] [WERN93] was chosen for the modeler portion of this
thesis [depicted as Pre Run-Time in Figure 12 on page 37]. Inventor includes many
manipulators, like transforms, transformManipBox, etc. that allowed easy devel opment
of a modeling tool. Also, Inventor is a very useful 3D AP, so learning it could provide
more insght into Visual Graphics.

The demonstration program Linkatron allowed a user to manipulate models as
they moved down a plane. The source code provided a good starting point for learning
Inventor and the C++ bindings. Linkatron, however, did not contain the appropriate
code-base for extending into a modeling tool.

Further digging uncovered two programs, SceneViewer and Gview. Both of these
demonstration programs shipped with source code. SceneViewer addressed the reading
and writing of files, but Gview represented the model in two windows; a visual window

43

and a scene graph window. Both of these programs could serve as a base modeling tool,
to be extended for this thess needs. After evaluating each program from a user’s
perspective, Gview was chosen as the base for this thesis modeling toal. It was renamed
to GAUDIVIEW and the code was extended extensively.

3. Rendering Tool

Iris Performer [depicted as Run-Timein Figure 12 on page 37] was chosen for the
database rendering application. Performer ships with the demonstration application
Perfly. Having used Perfly as a base for a previous project, familiarity was not an issue.
Perfly was aready a working database rendering application, so only the sound portion
needed to be implemented. @ Once audio capabilities were added, it was renamed
GAUDIFLY.

C. TYPEDEFS

During the development of AcousteLib, it was determined that a collection of
type definitions would allow all programs to share data types. The file is named
typedefs.h. For easy access, it islocated in the home directory.

After a great deal of thought, a few data types were determined to be necessary
for thisproject. Thisisnot an all-inclusive list of data types, only those necessary for this
proof of concept. These type definitions are represented throughout this section in many
tables. Further proposed type definitions are shown in Chapter |, Section C.

Representing a room, or a listening environment, is the most critical of the three
data structures in this project. The data types naturally group themseves into five
groupings. Thefirst of these groups gives us the room ID and its location. The room ID
IS necessary to address the Acoustetron |1. The second group gives us the location of the
room. The room has X, Y, and Z coordinates, and a size for the X, Y, and Z. Thisis
implemented in this fashion to address the Acoustetron 1.

Since a room is made of six walls, the next grouping represents the material
covering the wall. This information is represented by six integers, walllmaterial —
wallématerial. Although the Acoustetron |1 can apply only one material to al walls, it

was decided to represent all six walls in this data structure for consistency. The integer

represents one of the materials the Acoustetron Il can apply to a wall, as depicted in
Table 4.

Integer Value Material Graphical TextureFile
0 Anechoic Anechoic.rgb

1 Mirror mirror.rgb

2 Textile Carpet.rgh

3 Plywood wood.rgb

4 Glass Glass.rgb

Table 4: Acoustical Materials

In addition to applying a texture, or wall material, to each of the walls, the
Acoustetron |1 supports a loudness factor for each wall. In this manner, four walls could
reflect sound according to the default texture, while the front and back walls were set to a
loudness of —120dB. Thiswould effectively allow us to remove walls from the acoustical
environment, if that were necessary. To accommodate this, six integers for wall loudness

wereincluded. [thisredatesto liveness as discussed on page 15]

typedef struct {
i nt room D;
float roomX; // lower |eft corner of room
fl oat rooni;
fl oat roonk;

float roontizeX; // width of room
float roonStizeY; // height of room
float roontizeZ; // depth of room

i nt wal | Inateri al ;

i nt wal | 2mat eri al ;

i nt wal | 3materi al ;

i nt wal | 4mat eri al ;

i nt wal | 5Smaterial; // floor

i nt wal | 6rraterial; // ceiling
i nt wal | 1| oudness;
i nt wal | 2| oudness;
i nt wal | 3l oudness;
i nt wal | 4] oudness;
i nt wal | 5| oudness;
i nt wal | 6] oudness;
fl oat roonCoef 128;
fl oat roonCoef 256;
fl oat roonCoef512;
fl oat roonCoef 1024;
fl oat roonCoef 2048;
fl oat roonCoef 4096;

} roontBtruct;

Table 5: Room structure

45

The final grouping of data for the room acoustics contains the room coefficients.
Since the room coefficients are variable, depending upon the objects inside the room,
these coefficients were added so the total room coefficients could be calculated and
stored. Sincethe Acoustetron 11 did not support this function well, these were not used.

The final data structure for the room is shown in Table 5.

Representing a head, or a listener, was accomplished with an ID and a float array
with sx members. TheID isused to determine which listener is being referenced, in case
the scene contains more than one user with more than one simultaneous viewer/listener.
The six floats represent the listener’s X, Y, and Z coordinates and the listener’s heading,
pitch, and roll. The head structureis shown in Table 6.

t ypedef struct({

int I D

fl oat | ocati on[6] ;
} headStruct;

Table 6: Head structure

Representing a sound is rather straightforward. The sound structure, named
soundVector, consists of a soundID, a file name, a pointer to the wav, a location, and an
amplification factor, as shown in Table 7. The soundID represents the specific sound for
the Acoustetron 1l. When applying any function to a sound on the Acoustetron 11, the
soundID isrequired. The variable fname represents the actual name of the wav file. The
wav_ptr is an Acoustetron Il data structure and is used to track the sound. The sound
location is represented by a float array. The variable amplifyDB is used to adjust the
loudness of the sound to compensate for inequalities in the audio level in sound

recordings.
typedef struct {
int soundl D;
char fname[13]; // = “wel cone.wav”; //char *sPtr;
wav Ft *wave_ptr;
fl oat | ocati on[6] ;

fl oat anpl i fyDB;
} soundVect or;

Table 7: Sound structure
For the purpose of testing and early development, an overarching data structure
was built. It contained enough information to represent a room, a head, and four sounds
— the maximum number of sounds the Acoustetron 11 can render when performing room

acoustics. Thisdata structure isrepresented in Table 8.

46

typedef struct {
roonStruct theRoom
headStruct theHead;
soundVect or t heSoundO;
soundVect or theSoundl;
soundVect or t heSound2;
soundVect or t heSound3;

} audi oStruct;

Table 8 Prdiminary Audio Sructure

D. ACOUSTELIB

The Acoustetron |1 came with some example programs and a library to allow
development of applications. The function calls appeared to be well thought out, and laid
out in alogical order. It was determined that to implement this project in a most efficient
manner, function calls were needed that could be easily incorporated into any program,
such as initializing the sound device, playing a sound, etc. The Acoustetron library had a
function to initialize the sound device. It aso had a function to initialize a listener. It
contained a function to load a sound, a function to play a sound, a function to apply
volume to a sound, etc. To make programming easier, a single function to play a sound,
like playSound, should load the sound, set its volume, and start the sound playing.

After it was decided to implement this as an API, development became
straightforward. Routines were implemented to initialize the sound device and to closeit.
Routines were implemented to load a sound, play a sound, stop a sound, and update a
sound location. A function to update the listener’s location was also implemented.
Finally, a routine called setupAcousteTron was implemented. This routine, which was
not yet complete, could be called to implement all other routines needed to get the sound
device up and running with sound. At this point, each routine made its own call to
cre_update audio().

It was decided to create another function called afFrame(). Thisis to mirror the
Performer function pfFrame(). afFrame tells the sound device to apply any changes that
it has received since the last afFrame. This allows the programmer to control update or
frame rates, and alows the programmer more control over the control loop. The
programmer can aso program the afFrame immediately after the pfFrame. This allows
the audio and video to move at the same time.

47

At this point, it was decided to write functions to read and write an audio
environment. The information needed to represent an acoustical environment is
addressed in the section on Typedefs. Reading and writing the acoustical environment is
accomplished with the C++ statements cin and cout.

i nt initAcousteTron(headStruct head);

audi oSt ruct set upAcoust eTron(audi oStruct audi oWrl d);

voi d cl oseAcousteTron();

voi d updat eSoundLocat i on(soundVect or sound);

soundVect or updat eSoundLocat i on(soundVect or sound,
vector Struct PerflyData);

voi d updat eLi st ener Locati on(headStruct head);

headStruct updat eLi st ener Locati on(headStruct head,

vectorStruct PerflyData);

soundVect or | oadSound(soundVect or sound);

soundVect or cl oseSound(soundVect or sound);

voi d pl aySound(soundVect or sound); //

voi d pl aySoundOnce(soundVect or sound); //

voi d st opSound(soundVect or sound);

voi d anpli fySound(soundVect or sound);

soundVect or anpl i fySound(soundVect or sound, float val ue);

roonttruct makeARoom(roonftruct room;

voi d updat eRoon(roonttruct roonj;

voi d textureRoon{roonttruct roonj;

roontruct textureRoon(roonttruct room int material);

roonStruct renoveTexture(roonStruct roon;

voi d adj ust Wl | Loudness(roonft ruct room;

voi d saveAudi oGeonet ry(audi oSt ruct audi oWorl d);

voi d saveRoon{roontt ruct theRoon;

voi d saveRoon{roonttruct theRoom char *fil enane);

voi d saveSound(soundVect or theSound);

voi d saveSound(soundVect or theSound, char *fil enanme);

audi oSt ruct readAudi oGeonetry();

audi oSt ruct readAudi oGeonetry(char *fil ename);

roonttruct readRoon(char *fil enane);

soundVect or readSound(char *fil enane);

i nt defineCutput(int device);

voi d af Frame();

Table 9: Functionsimplemented in Acoustelib

After many iterations of compile, execute, debug and test, the necessary function
cals were implemented. These functions are shown in Table 9. These functions
represent a hardware dependent implementation of an acoustical server. Since this thesis
required only a proof of concept on only one set of hardware, the functions were
hardware specific. These functions represent the minimum necessary functions to

implement sound generation, propagation, and reception.

48

A small test program, acoustelibTest, was developed to test the new AcousteLib.

It first instantiated the audioSruct data structure. Throughout the many versions of
acoustdibTest, each of the function calls was tested.

E.

GAUDIVIEW

The first task in implementing GAUDIVIEW was to load an Inventor file. The

original program would load an Inventor file from the command line, but once the

program had begun, no other models could be imported. Although this was not

technically necessary, it was determined that a modeler that could not import any pre-

built models was a little too ssimplistic. This was not a proof-of-concept issue, it was a

simple pride issue.

SbBool openFil eSt uff(Sol nput *in)

{

ShBool ok = TRUE;
int argc = 0;
char * * argv;

argv = new char*[1];
argv[1] = new char[1];
argv[1][1] = *\0;
VKkApp *scal eApp = new VKApp(“GetFileStuff”, &argc, argv);
ShBool val ue;
VKkFi | eSel ectionDi al og(nyTitle);
// SET THE FILTER TO *. 1V
t heFi | eSel ectionDi al og->setFilterPattern(“*.iv");
t heFi | eSel ectionDi al og->setDirectory(“.”);
val ue = theFil eSel ecti onD al 0og- >post AndVai t();
i f (value == VKD al ogvanager: : OK)
{ ok = in->openFile(theFileSel ectionb al og->fileName()); };

if (value == VKD al ogvanager : : CANCEL)
{ cout << endl << “I don’t know what happened” << endl; };

return ok;

Table 10: File Dialog Code

Loading an Inventor file was actually a rather easy task. A Solnput node was

instantiated with the name &inFile, then assigned to the file. A ssimple code snippet to

read an Inventor file was assigned to the bufferNode, a SoNode type. The origina

49

program came with a Paste routine. Once the file was read, it was assigned to a
bufferNode. Next, the Paste routine was called. Now the newly read Inventor file could
be pasted into the scene graph. Thisis shown in Table 10.

The second implementation task was to build a room. Since this modeler was
intended to model room acoustics in addition to graphics, this task was to be the
cornerstone of the modder. Still not being overly familiar with Inventor, outright
creating a SoBox node and inserting it into the scene graph did not seem like the easy way
to go. Using the current executable version of Gview, a smple cube was built and saved
in afile named room.iv. The original code for loading an Inventor file was resurrected,
and the filename was hard-coded. This seemed like the easiest method of building the
room. Thiscodeisshownin Table 11.

=Bl = 1]
naew

|M::~:.'-.'.' TEXTURE ROCW SCLmD ALE

Gl petlmdare i
CanCTENEtEUE
Qs

| 11 =

Seleotion

|rﬁ et s Gy tanbal Traon. 4«

rik Fitar Cancel |

Roti Roty E n Doy trans¥ fpans | [1| Listin

Figure 14: File Sdection Box..
Thefile 'ballroom.iv’ isbeing selected. A windmill has already been
introduced into the scene.

To represent a room made of four wooden walls, we not only needed to
acoustically build the room, but also to build the graphical portion of the room. Now that
a room could be built, or at least loaded, texturing the room became the next priority.
Texturing awall is necessary to accomplish sound diffusion.

It was determined that the easiest way to accomplish this would be to create a

texture node and save it to an Inventor file. A file could be created for a wood texture, a

50

material texture, and a glass texture. Then any of these could be loaded. By reusing the
code snippet to load the file again, this task could be easily accomplished.

case ROOM | NSERT:
/1 CREATE THE ROOM

/] OPEN THE FI LE FOR READ
ok = oFile(“roomiv”, & nFile);

if (ok)

/1 SET THE bufferNode to ‘the input file’
buf f er Node = SoDB::readAll (& nFile);

/! CLCSE THE FI LE
inFile.closeFile();

el se {}; // do nothing
i f (bufferNode != NULL)

/] PLACE I T I N THE SCENEGRAPH
past eByRef = FALSE;
past eBegi n(echb) ;

// PLACE I T ON THE ACOUSTI C LANDSCAPE
audi owr | d. t heRoomroom D = O;
audi owr | d. t heRoom r oomX = 0O;
audi owr | d. t heRoom r oonY = 0;
audi owr | d. t heRoom roon¥” = 0O;
audi owr | d. t heRoom r oonti zeX

=]_;
audi owr | d. t heRoom r oontsi zeY = 1;
audi owr | d. t heRoom roontsi zeZ = 1;

audi oWor | d. t heRoom =
makeARoon(audi oWr | d. t heRoon) ;

af Frame() ;
else {}; // do nothing

br eak;

Table 11: Codeto createa room

At this point, the method of loading a predefined Inventor file had reached the end
of its utility. The modeler could create a room, and that room could be textured. The
modeler could keep track of the texture with a variable. But what if the user wanted to
change textures? Although we could just add another texture (the rightmost texture in the
scene graph is the one that the user will see), this was no longer an easy workaround. It
became time to find a new technique.

51

Since any node in the scene graph can be named, naming seemed the appropriate
method. The room would be named RoomNode. The texture node would be named
RoomTexture, and any other unforeseen nodes will be named as necessary. Once these
nodes are named, we can smply traverse the scene graph and perform operations to any
nodes. This seemed like real graphics programming, so it was the next endeavor
undertaken.

Searching the scene graph was as easy as originally thought. Finding a node
named RoomTextur e was accomplished with the following single line of code:

buf f er Node = buf f er Node- >get ByNane(“ RoonText ure”) ;

Actually applying the texture was also easy. Using the functions inherited from
the Inventor SoField node, changing the texture in a pre-existing texture node was
accomplished by the code in Table 12. A room textured with wood is shown in Figure
15.

SoField *field = bufferNode->getField(“fil enane”);
field->get(string);
if (texture == CARPET_I NT)

fiel d->set (CARPET);

Table 12: Modifying a texture

m
3
E
|

P Gav- ok SPENE WooN ot RE

5w ||
=

1=

Exlex

B

e e I R

B=
e

I T T T TTITif

m
E |

P — Dolly trans¥ transx @———rm 200

Figure 15: GAUDIEVIEW showing a simple room textured with wood.
Thel€eft portion of the screen shows the display graph. Theright portion of the
screen displays the scene graph.

52

Now the modeler could create a room and texture it. Since this is the barebones
minimum graphical modeling ability required to show proof of concept, it was time to
add sound to the modeler. The data structure audioStruct was instantiated with the name
audioWorld, and the makefile was altered to include AcoustLib.a. This was completed
easly, so it was time to begin implementing sound into GAUDIVIEW.To initialize the
Acoustetron 11, a head was created and placed in the scenegraph at the origin. The
Acoustetron was then initialized. Finaly, the head location was initialized on the
Acoustetron. The head represents the location that the modeler’s “ears’ would be in the
model.

A few pre-recorded sounds were added to the project. The project would have the
ability to reproduce a voice saying “Hey” and another saying “Test one two”. These
sounds were chosen because these are two methods used when someone wants to
acoudtically size a room. A trumpet sample of Maynard Ferguson playing the
introduction to Gospel John [FERG74] was the third sound incorporated. This was used
to smulate musical sounds played in a room. The fourth sound was the sound of a
helicopter, specifically the sound file 4helil.wav from the Acoustetron I1’'s sound library.
Figure 16 shows a head node along side a sound node that has been selected.

= giEw 4|

W

Gragde Foiy Moo TEXTIMRE ROCN Soiwe ALE E

Aobe Aoty | ITTTTTTTT7T00 Dolly trans¥ trans¥| G770 | Zaom |

Figure 16: Head node and Sound node.
The Head node on the | eft and the * Hey” node, sdlected, are shown in the
display graph portion of GAUDIVIEW.

53

Actually implementing the sounds into the modeler was accomplished in much
the same manner as initializing the sound device. First, an Inventor file containing the
appropriate graphic was loaded, and then it was pasted into the scene graph. Next, the
sound portion of the data structure audioWorld was initialized and the sound was |oaded.
The sound location and amplification were updated. Finally, the Acoustetron was told to
play the sound. Thiscodeisshown in Table 13. All of the sounds were implemented in

much the same manner.

case SCOUND_ HEY:

/1 1F SOUND |'S NOT ALREADY LOADED
if (hey == -1)
{

/] OPEN THE FILE FOR READ
ok = oFile(“hey.iv”, & nFile);

if (ok)

/1 SET THE bufferNode to ‘the input file’
buf f er Node = SoDB: :readAll (& nFile);

/!l CLOSE THE FI LE
inFile.closeFile();

}
el se {}; // do nothing

/1 PLACE I T I N THE SCENEGRAPH
past eByRef = FALSE;
past eBegi n(echb) ;

/] DEFINE THE SOUND
audi oWor | d. t heSound2. soundl D = 2;
strcpy(audi oWr ! d. t heSound2. f nane,
“hey. wav”) ;
audi oWor | d. t heSound2 =
| oadSound(audi oWr | d. t heSound?) ;

// AVE IT A LCCATI ON AT THE (RIGIN+5 +5 0
audi oWor | d. t heSound?2. | ocat i on[0]
audi oWor | d. t heSound?2. | ocati on[1]
audi oWor | d. t heSound?2. | ocati on[2]
audi oWor | d. t heSound?2. | ocati on[3]
audi oWor | d. t heSound?2. | ocati on[4]
audi oWor | d. t heSound?2. | ocati on[5]

(TR TR TR TR TR
cocooRpk
eeeeee

updat eSoundLocat i on(audi oWr | d. t heSound?2) ;

// AVE IT SOME VOLUVE
audi oWor | d. t heSound?2. anpl i fyDB = 100. O;

anpl i f ySound(audi oWr ! d. t heSoun d2) ;

/1 PLAY THE SCUND
pl aySoundOnce(audi oWr | d. t heSound2) ;

/1 I NCREMENT hel o
hey = 1,
}
else if (hey >= 0)
{
/1 PLAY THE SCUND
pl aySoundOnce(audi oWr | d. t heSound?2) ;
hey = 1,

}
el se {} // DO NOTH NG
br eak;

Table 13: Loading a sound in GAUDIVIEW

Now that the sounds were playing, we needed to be able to adjust parameters of
the room to hear the differences that the adjustments made. This was perhaps the most
difficult portion of the Inventor coding for thisthes's.

To resize the room, the room must first be located within the scene graph. This
was done in the same manner as finding a texture node. Once the room was found,
getting the height, width, and length data from the cube node was not very intuitive.
After much research through numerous man pages, the code snippet in Table 14 was
found and modified. By placing it into a function call, getFieldValue could be called
with a generic node and the name of a field, and it would return the value of that field.
This was important because by retrieving the value held in the field, the benefits of
Inventor and Gview, the modeling program that GAUDIVIEW was extended from, could
be realized. Since code already existed to modify the attributes of any node, the room
could be resized by smply double-clicking on it. An example of resizing a room is
shown in Figure 17.

55

Graplt o Mook TEXTURE RQOM SOURD FRE |

(bl] Pilr

A §
| |
| =
fow Aoty [| Dolly brans¥ transk 1 Zoom |
[[= catw s [LY
| : -
| wicith 6.2 Igrein Sl To Diefals
| height g Iprre | St To Diefauk
| depmh =] Ignore | Sei To Defel
/|
[{| Acoert || appby || Pevent || Cancet Chmide iy
¥
e e — L =
<

Figure 17: GAUDIVIEW n action.
The modd of Herrmann Hall Ballroomis courtesy of John Locke, NPSNET
Research Group member. The cube represents the acoustical “room” . Itis
being sized to match the graphical model of the Ballroom.

After the new values were applied, the user could select an option called Apply
Changes. This function walked through all of the nodes looking for audio information.
The audio structure was updated with the data from these nodes. The room’'s size was
determined and set. The room’s location was determined from the RoomTransform, then
set on the Acoustetron. The room texture was determined, and its value applied to the

room’'s audio material variable.

fl oat getFi el dval ue(SoNode *buffer Node, char *fi el dname)
{
float returnFloat;
SoFi el d *field = bufferNode->getFi el d(fi el dnane);
if (field-> sOType(SoSFFl oat:: getd assTypeld()))
{

SoSFFl oat *floatField = ((SoSFFl oat *)field);
returnFl oat = fl oatFi el d->get Val ue();

}

return returnFl oat;

}

Table 14: Codeto get thevaluein a specified field

56

At this point, GAUDIVIEW was modeling both the sound and the geometry
successfully. It was now time to save the audio environment. Since a function to save an
audio environment was written and tested in Acoustelib, a smple call to the procedure
saveRoom accomplished this task.

Now that visual and auditory modes could be saved, it was time to clean up the
loose ends. In the same vein that the audio environment was updated, the sounds could
be updated. A sound could be moved by sdecting the sound's transform node and
adjusting its values. By adding a few more lines of code to the Update Audio function,
trandation values for each of the sounds were obtained from the scene graph and applied
to the Acoustetron I1.

For the purposes of this demo, it was determined that the damping factors of the
walls should be adjustable. This would allow a user to make dight modifications to the
“materid” that covered the walls, and would demonstrate that these parameters should be
adjustable. A function was added to adjust the liveness of the floor, celling, and each of
thewalls.

Finally, a function was added to select the audio output medium. Since the
Acoustetron 11 supported output to headphones, or speaker systems, this was also
included in the modeler.

F. GAUDIFLY

Since Perfly was already a working renderer, it only needed integration of the
sound portion. This was done by adding only a few lines of code. Immediately after
Perfly executed the function pfFrame(), the acoustical function afFrame() was added.
When the viewpoint moved, the hearing point was also moved.

/1 1 MPLEMENT THE AUDI O STRUCTURES

roontt ruct t heRoom

headSt r uct t heHead;

soundVect or t heSound[NUMSOURCES] ;
i nt nunSounds;

i nt AUDI ODEVI CELQADED;

i nt SPEAKERTYPE;

i nt SOUNDON;

Table 15: Declaring the audio structuresin GAUDIFLY

57

To implement sound into Perfly, creating GAUDIFLY/, the sound devices needed
to be declared. These were added to the ViewState structure already in existence. Unlike
GAUDIVIEW, thetest structure audioWbr|d was not used; instead, each of the structures
was implemented in its own right. Thisis shown in Table 15.

To align the viewer's hearing location with the current camera’s view, the
location variables for the current head were assigned the values of the ViewState's
viewCoords. Thisisshown in Table 16.

Vi ewSt at e- >t heHead. | ocati on[0]
Vi ewSt at e- >t heHead. | ocati on[1]
Vi ewSt at e- >t heHead. | ocati on[2]
Vi ewSt at e- >t heHead. | ocati on[3]
Vi ewSt at e- >t heHead. | ocat i on[4] Vi ewSt at e- >vi ewCoor d. hpr[1] ;
Vi ewSt at e- >t heHead. | ocat i on[5] Vi ewSt at e- >vi ewCoor d. hpr[2] ;
updat eLi st ener Locat i on(Vi ewSt at e- >t heHead) ;

Vi ewSt at e- >vi ewCoor d. xyz[0] ;
Vi ewSt at e- >vi ewCoor d. xyz[1] ;
Vi ewSt at e- >vi ewCoor d. xyz[2] ;
Vi ewSt at e- >vi ewCoor d. hpr[0] ;

Table 16: Applying Viewer’s Coordinates to the sound device

Once GAUDIFLY was working correctly using Acoustelib’s initSound(), which
loaded a pre-working acoustical environment, it was time to start initializing the sound
device by specific function calls, and loading environments and sounds from the

command line. The command line parameters are shown in Table 17.

Command Line Parameter | Effect of parameter
-A Initialize the sound device
-S Audio environment to load
-S Sound file to load

Table 17: Command line parameters for AUDIFLY
The command line parameters were implemented in the file cmdline.C as shown
in Table 18. The option A was modified to initialize the sound device. The variable
theHead was initialized and then the Acoustelib function updatelistenerLocation was
caled. The option S was modified to load an audio environment. The option s was
modified to load an audio sound.

Once these command line parameters were implemented, GAUDIFLY
specifically met the requirements set forth for this project. It could load and run a sound
free virtual environment. It could load and run an environment with sounds. It could
load and render a fully specified acoustical environment. Figure 18 shows GAUDIFLY
rendering a helicopter and Herrmann Hall.

58

/1 I NI TIALI ZE THE SOCUND DEVI CE
case ‘A :
/1 GET THE AUDI O FI LE NAME

Vi ewSt at e- >t heHead. | ocati on[0]

= Vi ewSt at e- >vi ewCoor d. xyz[0] ;
Vi ewSt at e- >t heHead. | ocati on[1]

= Vi ewSt at e- >vi ewCoor d. xyz[1] ;
Vi ewSt at e- >t heHead. | ocati on[2]

= Vi ewSt at e- >vi ewCoor d. xyz[2] ;
Vi ewSt at e- >t heHead. | ocati on[3]

= Vi ewSt at e- >vi ewCoor d. hpr[0] ;
Vi ewSt at e- >t heHead. | ocat i on[4]

= Vi ewSt at e- >vi ewCoor d. hpr[1] ;
Vi ewSt at e- >t heHead. | ocat i on[5]

= Vi ewSt at e- >vi ewCoor d. hpr[2] ;
updat eLi st ener Locat i on(Vi ewSt at e- >t heHead) ;

/] SETUP THE ACOUSTETRON
i f (initAcousteTron(Vi ewstate->theHead) == 0)

{
}
el se

{
}

br eak;

Vi ewSt at e- >AUDI CDEVI CELOADED

0;

Vi ewSt at e- >AUDI CDEVI CELOADED

I
=

/1 READ THE ROOM SOUND AND SET UP THE ROOM (ACOUSTI CALLY)
case ‘'S :

Vi ewSt at e- >t heRoom room D = - 1;
Vi ewSt at e- >t heRoom = r eadRoon{ opt ar g) ;
if (ViewState->theRoomroom D == -1)

{
}

el se

{

usage(“ BAD ROOM FI LE NAME') ;

// SET UP THE ROCOM
Vi ewSt at e- >t heRoom roonl D = O;
Vi ewSt at e- >t heRoom =
makeARoon(Vi ewSt at e- >t heRoon) ;
}

br eak;

/1 READ A SOUND FILE, ADD IT TO THE SCENE AND THE ACQUSTI CS
case ‘s’:
Vi ewSt at e- >t heSound[Vi ewsSt at e- >nunSounds]
= readSound(opt arg);
if (Viewstate->t heSound[Vi ewSt at e- >nunSounds] . soundl D
== - 1)
{ usage(“BAD .snd FILE"); }
el se

Vi ewSt at e- >t heSound[Vi ewSt at e- >nunSounds]

59

= | oadSound(Vi ewSt at e- >t heSound[Vi ewSt at e
- >nunounds]) ;

updat eSoundLocat i on
(Vi ewSt at e- >t heSound[Vi ewSt at e- >nunSounds]) ;
anpl i fySound
(Vi ewSt at e- >t heSound[Vi ewSt at e- >nunSounds]) ;
p! ay Sound
(Vi ewSt at e- >t heSound[Vi ewSt at e- >nunSounds]) ;
}
Vi ewSt at e- >nunSounds++;
br eak;

Table 18: Modifications to cmdline.C

G. SUMMARY

This implementation consists of three applications, Acoustelib, GAUDIVIEW,
and GAUDIFLY. These applications, written as a family of graphical and audio
modeling tools, effectively prove the concept of this thesis. They allow a modeler to
easly build a graphical and acoustical model simultaneously and without added effort.
The GAUDIFLY allows the user to navigate through a three-dimensional virtual world of
graphics and audio. It correctly implements the generation, propagation, and reception
states, although the generation state isimplemented with only wav files.

B

Figure 18: Screencapture of GAUDIFLY

60

VI. DISCUSSION

A. WHAT WOULD BE NECESSARY TO MAKE THISA PRODUCTION
MODEL?

The software developed for this thesis, AcousteLib, GAUDIVIEW, and
GAUDIFLY, were for proof of concept only. Had they been developed for practical,
daily use, some things would have been done differently.

1. Acoustelib

If AcousteLib were developed for daily use, four issues would need addressing.
First, AcousteLib should be less hardware specific. Currently, AcousteLib runs on an
SGI and uses an Acoustetron Il. For more versatility, Acoustelib should be ported to the
PC. It should address not only the Acoustetron 11, but also all Microsoft Windows
compatible sound cards.

Second, Acoustelib is currently limited to implementing only a few acoustical
textures applied to walls. This is due to the hardware. If AcousteLib would maintain a
list of objects within a given room, it could calculate the room’s reverberation time. The
room’s reverberation time could be smulated with delays and equalization. This would
allow any textures to be implemented.

Third, sound generation is another area that would need enhancing to make this
product more robust. MIDI was a feature painfully missing from AcousteLib, along with
other methods of sound generation like FM synthesis or sound modeling. The
Acoustelib used sampled wav files to generate sounds; this method was el ected since this
thesis did not focus on sound generation, but instead focused on environment
specification.

The fourth and final maor weakness of Acoustelib is its neglect of ambient
sounds. Ambient sounds are sounds that are not localized. The general noise leve heard
in a room, on a dreet, or in the countryside are all sounds that should be present.

Acoustel ib does not address sounds that are non-directional.

61

2. GAUDIVIEW

If GAUDIVIEW were developed for daily use, four issues would need addressing.
The first issue concerns the viewpoint/hearpoint. Currently, the user has a birds-eye view
of the model. A head represents where the sounds are being heard, but the user can pan
left or right or move closer or farther while keeping the same hearing point. The head in
the model could be thought of as a microphone, and the model builder had the ability to
fly around the model. This was done by design. An option that would have been added,
had time permitted, was an ability to set a viewpoint at the hearing location. The user
would see and hear exactly what the head in the moddel was seeing and hearing. This
could have been accomplished with a camerain Inventor.

The second issue that was not addressed is attaching a sound to a rotor. The
rotor’s movement would be reflected in the sound's transform. With the current version
of GAUDIVIEW, updates to the audio pipeline are only applied to the sound device
when the user reguests.

The third issue is that GAUDIVIEW does not keep track of the room’s objects
and the textures of those objects. This could be done easily, if it were supported in
Acoustelib. Since the AcousteLib did not support this function, it was not built into
GAUDIVIEW.

The forth and last issue with GAUDIVIEW is its ability to save. Currently,
GAUDIVIEW can save the whole scene graph as an Inventor moddl. It can also save the
complete audio environment. To be more functional, the user should be able to select a
subgraph and be given the choice to save as any of the following:

An Inventor mode (graphics only)

An acoustical moddl (acoustical geometry only)

An Inventor modd and acoustical model (graphical and acoustical geometry)
A sound model (acoustical properties only)

An Inventor model and a sound model (graphical model and acoustical
properties)

3. GAUDIFLY

If AcousteLib were to have been developed for daily use, the main issue that
needs addressing is the ability for a model to move. Due to non-interoperability between

Performer and the Acoustelib, attaching sounds to a DCS was not accomplished.

62

Although routines could have been written to extend Performer, but that was determined
to be beyond the scope of this thesis. Attaching sounds to a DCS would have allowed a
tank driving by to sound like a tank driving by.

Figure 19 demonstrates how these three applications fulfill the APP-CULL-
DRAW and APP-CULL-PLAY phasesthat were introduced on page 36.

Pre Run-Time

Polygon . .
Modeling Real-Time S—— Rendering
Acoustical Aural 3D Sound
. —-—’ .
Modeling Environment Rendering

AcousteLib AcousteLib

GAUDIVIEW

GAUDIFLY

Figure 19: Resolving the applications with Figure 12

B. WHAT ISREALLY NEEDED?

1. Modeers

In modders, the ability to create either the visual or the auditory geometry, with
the other being a free by-product, is paramount. Thiswill enable visual model buildersto
get the acoustical model with little or no added effort. This will also allow acoustical

63

modelers to have a graphical representation of what they just built without necessarily
concentrating on the graphical portions.

The ability to adjust parameters is also important. As a modeler sometimes must
adjust the ambient properties of a polygon to make it ook correct, the modeler also may
need to adjust the auditory parameters from the defaults.

2. Programming

Developing a rendering engine for Performer, a browser for VRML, or any other
geometry database walkthrough program will be auditory friendly when auditory models
are a part of the modeling language. When a texture maps to a polygon, the acoustical
properties of that texture should also map. When a polygon collides with another
polygon, an auditory collision should aso occur. In short, the auditory properties should
be apart of, not an afterthought to, the environment.

VIl. CONCLUSIONSAND RECOMMENDATIONS

After months of experiments, research, tests, and implementations, many
observations about the representation of audio and the representation of graphics have
been made. Many similarities between graphics and audio have been noticed. Relying
upon months of observation, the following recommendations are proposed.

A. MODELING

When building models, the aural model and geometric model should be built
simultaneously. Building them separately requires the builder to understand both the
geometry and audio.

When a piece of geometry, say a cube, is created, it comes with default values. In
Inventor, upon creation of a cube, the cube defaults to color values for red, green, and
blue implemented as {0.2 0.2 0.2}. If the user wants to change the color of the cube, the
user can do that. When that piece of geometry is created, it should also come with
default acoustical properties. These properties could include the following:

Timbre Tree - equates to emissive color
Acoustical absorption coefficients - equates to reflective properties

When a piece of geometry is textured with a file, for example wood.rgb, an
accompanying audio texture file named wood.aud, should accompany. The audio texture
file should contain the acoustic properties of the item. Specifically, it should contain the
absorption coefficients of the material that the texture file represents.

B. PROGRAMMING

All of the APIs discussed handled some of the tasks very well. None of the APIs
did everything perfectly. An overarching APl needsto be created. A few APIsexist, and
they all do some things well. Microsoft’s DirectX is very good. It contains both the
geometric and the acoustic properties. Things can be attached and detached, and the
audio and geometry work well together. It represents sounds well.

65

Aureal’s A3D better represents the acoustical environment. Unfortunatdly, it is
not part of an integrated geometry/audio APl. An overarching APl needs to be created.
A few APIs exist, and they all do some thingswell. Microsoft’s DirectX isvery good. It
contains both the geometric and the acoustic properties. Things can be attached and
detached, and the audio and geometry work well together. It represents sounds well.
Aureal’s A3D better represents the acoustical environment; unfortunately, it is not part of
an integrated geometry/audio API.

Microsoft's DirectX, or more specifically DirectSound API, is a recommend
starting point. To the API it is recommended to add representations for the acoustical
properties of an object - i.e., absorption coefficients. To an object, it is recommended to
add a method of making its sound, such as a wav file (good for static noises, like an
engine or a dren), a Timbre Tree (to create sounds like ‘this object is being hit with a
hammer’), or whatever is the method of choice. The API aso needs a method of making
a room. This could possibly be done with an audio equivalent of a culling frustum.
When the audio is being rendered with a wave-tracing algorithm, the sounds can be
calculated exactly. When the audio is being approximated by a method such as reverb,
then simply perform the mathematics on the acoustic properties of all items within the
room, then set an appropriate reverb.

If an API isdeveloped like, or possibly extended from, the DirectX AP, it should
already work for any PC sound card that supports DirectX. PC sound cards that do not
support DirectX should not be addressed, because they will not be around very long.
Implementing the API for SGIs and other Unix/Linux boxes is also a strong idea
Although the lower-end markets tend to purchase Windows based systems, a large
amount of innovation occurs on Unix/Linux boxes. By having a method of representing
everything easily on al platforms, this method has a much better chance of taking hold.

C. NODES/DATA TYPES

Many geometry specifications exist, all with strengths and weaknesses. For this
portion of the thesis, VRML will be the modeling language used. The concepts,
however, apply to Inventor, Performer, Fahrenheit, and any other competitive toolkit.

66

A data type should be developed for acoustical absorption properties. That data
type should be a vector of six floats. A sample acoustical data typeis shown in Table 19.

Typedef struct {
float Coefl128; [// acoustical coeffecient
float Coef256; [// acoustical coeffecient
float Coef512; // acoustical coeffecient
fl oat Coef1024; // acoustical coeffecient
fl oat Coef2048; // acoustical coeffecient
fl oat Coef4096; // acoustical coeffecient

} SFAcous;

Table 19: Proposed Acoustical Data Type
VRML contains a texture node called the image texture. It addresses only the
graphical representation of a polygon’s texture. By adding acoustical properties, the
image texture would represent both the graphical and the acoustical reflection and
absorption properties in the environment. A possible implementation is shown in Table
20.

| mgeTexture {

ExposedField MFString url [1

Field SFBool repeat S TRUE
Field SFBool repeat T TRUE
Field SFAcous acousti cCoefs

}

Table 20: Proposed Texture Node

The VRML sound node is the method of representing sound in VRML. The
sound node can reference an audio clip. It currently allows for sound dispersion via
MinBack, MinFront, MaxBack, and MaxFront fields. These fields could be default
fields, but a method of representing the dispersion pattern with a structure such as the
IndexedFaceSet would be appropriate for better sound modeling. This would enable the
dispersion pattern of a loudspeaker to be precisdy emulated. For acoustical
representations that do not require as much precision, the ellipses would suffice.

VRML currently has an audio node. This node specifies an audio clip, a wav or
MIDI file. The audio node can be played by the sound node. The audio node could be
overloaded to allow for other methods of sound creation, such as Timbre Trees or PAM.
By allowing a sound node to activate a sound represented by Timbre Trees or PAM, the
modeler could represent one object as a bell and another object as a hammer. When these

67

objects collided, the environment could realistically create the sound of a hammer
striking a bell using the audio modd.

When a polygon is instantiated in VRML, it can be given graphical properties
such as textures, materials, etc. The object should also be able to have audio properties.
An example of a ceiling covered in celotex is shown in Table 21.

Transform {
translation -2.4 .2 1
rotation 011 .9
children [
Shape {
geonetry Box {}
appear ance Appear ance {
material Material { diffuseColor O O 1 }# Bl ue
texture |l mageTexture {
url “cel otex.jpg”
acousticCoefs 0.41 0.48 0.68
0.79 0.75 0.55

Table 21: Sample code for a ceiling made of celotex
Finally, neither VRML nor other modeling languages contains a specification for
aroom. Although they all contain a structure equivalent to a cube, thisis not sufficient.
A room can be made more than four walls, one ceiling, and one floor. Again, the
IndexedFaceSet could be used to represent a room when an existing polygon does not

work.

#VRWML V2.0 utf8

Shape {
Room | ndexedFaceSet {
coordindex [O, 1, 3, -1, 0, 2, 3, -1]
coord Coordinate {
point [000, 100, 10-1, 051 0]

col or Col or

{
color [0.2 0.7 0.8, 0.5 0 O,
0.1 0.80.1, 000.7]

}

nor mal Normal {
vector [001, 001 001, 001]

t exCoord TextureCoordi nate {
point [00, 10, 10.4, 11]

68

}
}
appear ance Appearance {
material Material { transparency 0.5 }

texture Pixel Texture {
image 2 2 1 OxFF 0x80 0x80 OxFF
}
}

acoustics Acoustics { 0.0 0.0 0.0 0.0 0.0 0.0}

Table 22: Sample code for a Room

D. FUTURE WORK

1. BUILD A GEOMETRY/AUDIO INTEGRATED MODELER IN
JAVA

Java is a write once, run everywhere programming language. A programmer
astute in Java could write a modeler that could run on any platform. The geometric
modeling portion of this would be academic. The audio portion would not be as easy.
Currently, Java supports only the ssimple playing of sound file, not the ability to process
the sound filein real time. Because processing sound usually requires accessing hardware
- or in the case of Microsoft® Windows, accessing the Windows Foundations Class -
sound processing requires writing machine specific code. Until Java develops more
robust audio processing, this portion of the modeler will be difficult. Better yet, develop

the audio portion of the Java programming language.

2. IMPLEMENT THE AUDIO ENVIRONMENT IN VRML

If this method were to become the best method of implementing rich acoustical
environments, it means nothing unlessit is implemented in a manner that is used by many
people. VRML has the potential to become as prevalent in VR as the HyperText Markup
Language (HTML) has become in the hypertext, or world wide web (WWW), world. By
linking up with the VRML world, we can possibly affect the VR world with a lasting
impact.

69

The VRML world has not addressed the audio environment yet, because they
wanted to wait until they could dedicate the amount of time/work necessary to do it
correctly. Bravol The VRML Consortium (VRMLC) will soon begin working on
developing audio. Thisis a golden opportunity for someone with a little ambition and a
desire to make wavesin a part of the VE world where it will really matter.

A first recommendation is to fight for and implement the acoustical environment
parameters. Next, make the sound dlipses programmable. This can be accomplished
with adisperson formula. When a sound occurs, the loudness of that sound decreases as
the distance from the sound to the listener increases. VRML has chosen to implement
this phenomenon with dlipses. Although this does work, it has major problems. First, in
the real world, the dispersion pattern is not diptical. An obvious example is a
loudspeaker cabinet, which usually comes with a documented dispersion pattern.
Second, if a user is on one side of awall and a sound is on another side of the wall, the
user can still hear the sound while within the elipses. The acoustical properties of the
wall do not affect the hearing of the sound. Productive work exists for making the
ellipses programmable, so that if a loudspeaker directs sound forward, as opposed to
omnidirectional sound, the virtual environment can be represented more accurately.

3. MORE PRECISE IMPLEMENTATIONS OF SOUNDS

There are many other parallels that can be drawn between the geometry world and
the audio world. These need to be worked at some time in the future. Two such areas
where more precise implementation of sounds are needed include level of detail and
tight/loose reverb.

Levd of detail (LOD) - when a user is standing a few feet from a building, the
reflections of an explosion off of the building need to be calculated. There should be a
reflection from the glass, another from the eaves, etc. If the user is standing 40 meters
from that building, the LOD can be much less stringent. Perhaps a single reflection from
a point source, the building, would suffice. This could reduce the workload from the
DSP - much like levels of detail reduce the workload in the graphics pipeline.

Use tight/loose reverb for smaller systems - Creative Labs has shown that

tight/loose reverb can be somewhat effective for smulating room acoustics. A

70

recommendation is to implement a formula to determine the acoustical properties of the
room from the acoustical properties of each item in the room. After this, the appropriate

reverb times can be calculated for each band and subsequently rendered for each band.

71

72

LIST OF REFERENCES

[ACOU96] Crystal River Engineering Inc., Acoustetron |1, The Audio RealityTM Sound
Server Manual, Crystal River Engineering Inc., Palo Alto, CA, 1996

[ALBE97] Albers, Mike, “Psychoacoustics”.
[http:/mww.isye.gatech.edu/chmsr/Mike_Albers/projects/V arese/ Psychoacoustics
html]. May, 1997

[ARON92] Arons, B. (1992). A review of the cocktail party effect. Journal of the
American Voice I/O Society, 12(July)

[AURE98] Aureal Semiconductor, “3D Audio Primer”,
[http://mww.aureal .com/tech/primer.html], August 1998

[AURE98B] Aureal Semiconductor, “ Aureal Announces Vortex 2: Next Generation PCI
Audio Processor 7, [http://mww.aureal .com/press/1998/080698-V ortex2.htm],
August 1998

[AURE98C] Aureal Semiconductor, “ A3D 2.0 Technical Brief”.
[http://www.aureal .com/tech/A3D2_0Otech.html]. August 1998

[BEAC97] Beacham, Frank (1997). “Sound Design For The Interactive Era’, Pro Audio
Review, September 1997

[BEGA94] Begault, Durand, (1994). 3-D Sound For Virtual Reality and Multimedia.
Academic Press, Inc.

[BIGG96] Biggs, Lloyd, Headphone-Dédivered Three-dimensional Sound in NPSNET,
Master’s Thesis, Naval Postgraduate School, Monterey, California, September
1996

[DEUT80] Deutsch, D. (1980). “The processing of structured and unstructured tonal
sequences’. Perception and Psychophysics, 28(5), pp. 381-389

[DEWAT7] Dewar, K.M., Cuddy, L.L. & Mewhort, D.J. (1977). “Recognition of single
tones with and without context.” Journal of Experimental Psychology: Human
Learning and Memory, 3(1), pp. 60-67

[DIVA9S] Takala, Tapio, Marienkirche— A visual and aural demonstration film, [Video
Cassette] Producer: Tapio Takala, Helsinki University of Technology, July, 1998

[FERG74] Maynard Ferguson, “Gospel John”, Chameleon, [Compact Disc] CBS SBP
234558

73

[FOLEQQ] Foley, J.D., van Dam, A., Feiner, S.F., Hughes, J.F. (1997). Computer
Graphics, Principles and Practices (2" ed. in C). New York: Addison-Wesey

[FOST98] Foster, Scott. Personal Communication, January, 1998

[FRAI82] Fraisse, P. (1982). “Rhythm and tempo”. In D. Deutsch (Ed.), The psychology
of music, pp. 149-180. San Diego, CA.. Academic Press

[FOUA97] Fouad, Hesham, Scheduling Algorithms for Real-time Sound Generation in
Virtual Environments, Ph.D. Dissertation, The George Washington University,
September 1997

[GELF81] Gefand, S.A. (1981). Hearing: An introduction to psychological and
physociological acoustics. New York: Marcel Dekker Inc

[HAMMO98] Hamm, Russdll, “Significance of Musical Harmonics.”
[http://www.giltronics.com/rhamm.htm]. March 1998

[IRIS96] Silicon Graphics, Incorporated (1996). “IrisInSight Release 2.3.3”

[KNUDS50] Knudsen, V. and Harris, C. (1950). Acoustical Designing in Architecture,
p. 139 New York: John Wiley & Sons, Inc. London: Chapman & Hall, Ltd.

[LAWS98] Lawson, John, Level Of Presence Or Engagement In One Experiance As A
Function Of Disengagement From A Concurrent Experience, Master’s Thesis,
Naval Postgraduate School, Monterey, California, September 1998

[RANE98BA] Rane Corporation, “ AD 22 and AD 22B Audio Delays’,
[http://www.rane.com/ad22.htm], August 1998

[RANE98B] Rane Corporation “GE 60 Graphic Equalizer”,
[http://www.rane.com/ge60.htm], August 1998

[ROSS95] Rossing, Thomas D. (1990). The Science of Sound. New York: Addison-
Wesley

[SBLI9BA] Crestive Labs®, “Sound Blaster Live!l Technical Specs & System
Requirements’ [http://www.shlive.com/product/specs.html]. August 1998

[SBL198B] Creative Labs®, “Sound Blaster Live! Features & Benefits’
[http://mwww.sblive.com/product/benefits.html]. August 1998

[SBLI198C] Crestive Labs®, “Evolution of EAX”.
[http://www.soundbl aster.com/eaudi o/whitepaper/evol ve-eax.html]. August 1998

74

[STOR98] Storms, Russell, Auditory-Visual Cross-Modal Perception Phenomena, Ph.D.
Dissertation, Naval Postgraduate School, Monterey, California, September 1998

[STOR95] Storms, Russell, NPSNET-3D Sound Server: An Effective Use of the Auditory
Channel, Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1995

[WELC98A] Welch, Norma, “Basic Acoustics and Psychoacoustics.”
[http://www.musi c.mcgill.ca/auditory/physics.html]. March 1998

[WELC98B] Welch, Norma, “ Selected Moments from History”.
[http://www.music.mcgill.ca/auditory/history.html]. March 1998

[WERN94] Wernecke, Josie (1994). The Inventor Toolmaker. New York: Addison-
Wesley

[WERN93] Wernecke, Josie (1993). The Inventor Mentor. New York: Addison-Wesley

[WOUD97] Woudenberg, Eric, “ Masking and Perceptual Coding.”
[http://www.hip.atr.co.jp/~eaw/minidisc/MaskingPaper.html]. June, 1998

75

76

BIBLIOGRAPHY

Albers, Mike, “Psychoacoustics’.
[http://www.isye.gatech.edu/chmsr/Mike Albers/projects/Varese/Psychoacoustics.html].
May, 1997

Arons, B. (1992). A review of the cocktail party effect. Journal of the American Voice
|/0 Society, 12(July)

Aureal Semiconductor, “3D Audio Primer”, [http://www.aureal .com/tech/primer.html],
August 1998

Begault, Durand, (1994). 3-D Sound For Virtual Reality and Multimedia. Academic
Press, Inc.

Biggs, Lloyd, Headphone-Delivered Three-dimensional Sound in NPSNET, Master’s
Thesis, Naval Postgraduate School, Monterey, California, September 1996

Beacham, Frank (1997). “Sound Design For The Interactive Era’, Pro Audio Review,
September 1997

Crystal River Engineering Inc., Acoustetron |1, The Audio RealityTM Sound Server
Manual, Crystal River Engineering Inc., Palo Alto, CA, 1996

Deutsch, D. (1980). “The processing of structured and unstructured tonal sequences’.
Per ception and Psychophysics, 28(5)

Dewar, K.M., Cuddy, L.L. & Mewhort, D.J. (1977). “Recognition of single tones with
and without context.” Journal of Experimental Psychology: Human Learning and
Memory, 3(1)

Ferguson, Maynard, “Gospel John”, Chameeon, [Compact Disc] CBS SBP 234558

Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), The psychology of music.
San Diego, CA.: Academic Press

Foley, J.D., van Dam, A., Feiner, SF., Hughes, J.F. (1997). Computer Graphics,
Principles and Practices (2" ed. in C). New York: Addison-Wesey

Fouad, Hesham, Scheduling Algorithms for Real-time Sound Generation in Virtual
Environments, Ph.D. Dissertation, The George Washington University, September 1997

Gelfand, S.A. (1981). Hearing: An introduction to psychological and physociological
acoustics. New York: Marcel Dekker Inc

77

Hamm, Russdll, “ Significance of Musical Harmonics.”
[http://www.giltronics.com/rhamm.htm]. March 1998

Kilgard, Mark, (1997). OpenGL ™ Programming for the X Window System. New Y ork:
Addison-Wesley Devel opers Press

Knudsen, V. and Harris, C. (1950). Acoustical Designing in Architecture. New York:
John Wiley & Sons, Inc. London: Chapman & Hall, Ltd.

Lawson, John, Level Of Presence Or Engagement In One Experiance As A Function Of
Disengagement From A Concurrent Experience, Master’s Thesis, Naval Postgraduate
School, Monterey, California, September 1998

Rane Corporation, “ AD 22 and AD 22B Audio Ddlays’,
[http://www.rane.com/ad22.htm], August 1998

Rane Corporation “ GE 60 Graphic Equalizer”, [http://www.rane.com/ge60.htm], August
1998

Rane Corporation, “Rane Professional Audio Reference’. [http://mwww.rane.com/digi-
dic.htm], August 1998

Rossing, Thomas D. (1990). The Science of Sound. New York: Addison-Wedley.
Silicon Graphics, Incorporated (1996). “IrisInSight Release 2.3.3"

Storms, Russdll, Auditory-Visual Cross-Modal Perception Phenomena, Ph.D.
Dissertation, Naval Postgraduate School, Monterey, California, September 1998

Storms, Russall, NPSNET-3D Sound Server: An Effective Use of the Auditory Channd,
Master’s Thesis, Naval Postgraduate School, Monterey, California, September 1995

Takala, Tapio, Marienkirche— A visual and aural demonstration film, [Video Cassette]
Producer: Tapio Takala, Helsinki University of Technology, July, 1998

Takaa, T., Hahn, J., Gritz, L., Geigd, J., and Lee, JW., Using Physically Based Modd's
and Genetic Algorithms for Functional Composition of Sound Sgnals, Synchronized to
Animated Motion, International Computer Music Conference, September 1993

Welch, Norma, “Basic Acoustics and Psychoacoustics.”
[http://www.music.mcgill.ca/auditory/physics.html]. March 1998

Welch, Norma, “ Selected Moments from History”.
[http://www.music.mcgill.ca/auditory/history.html]. March 1998

Wernecke, Josie (1994). The Inventor Toolmaker. New York: Addison-Wesley

78

Wernecke, Josie (1993). The Inventor Mentor. New York: Addison-Wesley

Woudenberg, Eric, “ Masking and Perceptual Coding.”
[http://www.hip.atr.co.jp/~eaw/minidisc/MaskingPaper.html]. June, 1998

79

80

INITIAL DISTRIBUTION LIST

Defense Technical INfOrmation CaNLEN..........ooeeeeeee e e e e aeens
8725 John J. Kingman Rd., STE 0944
Ft. Bdvoir, VA 22060-6218

Dudley KNOX LIDrary........c.oooeiiiee e
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

Director, Training and EAUCTAION...........ooiiiiiiiiiieciiee e
MCCDC, Code C46

1019 Elliot Road

Quantico, VA 22134-5027

Director, Marine Corps Research Center..........cevviieeiiie e
MCCDC, Code C40RC

2040 Broadway Street

Quantico, VA 22134-5107

Director, Studies and ANalySIS DIVISION.......ccooiuiiiiiiieiiiie e
MCCDC, Code C45

3300 Russell Road

Quantico, VA 22134-5130

Marine Corps REDIESENTALIVE.eeiiiiieiiie et e e eeeas
Naval Postgraduate School

Code 037, Bldg. 234, HA-220

699 Dyer Road

Monterey, CA 93940

Marine Corps Tactical Systems SUppOrt ACHIVILY.......coceeeiiieeiiiee e
Technical Advisory Branch

Attn: Mg J. C. Cummiskey

Box 555171

Camp Pendleton, CA 92055-5080

D G {00V B = 1 (< o [P T
Computer Science Dept., Code CS/DR

Naval Postgraduate School

Monterey, CA 93943

81

D Y T N4 o - PRI
Computer Science Dept., Code CSZK

Naval Postgraduate School

Monterey, CA 93943

[V LAY F=To = o (o] o1 VTR
Chief Scientist and Technical Director

US Army STRICOM

12350 Research Parkway

Orlando, FL 32826-3276

[1= o (0] TR
Office of Science & Innovation

Osl, MCCDC

3300 Russell Road

Quantico, VA 22134-5021

DI. RUSSEI SEOMMIS....uuuuuiriiiiiiiiiiiiiiiiiiiiiiiiiissssserssseeesarasa...—...————————————————————————.—...———.
404 Cana of Galilee CourtOffice of Science & Innovation

Osl, MCCDC

3300 Russell Road

Quantico, VA 22134-5021

Dr. Durand R. BEQAUIT.........coiiiiiiiie et
Mail Stop 262-2, Room 130

NASA Ames Research Center

Moffett Field, California 94035-1000 USA

Y S oo 0= (< (PSR
Aureal Semiconductor

4245 Technology Drive

Fremont, CA 94538

IMIE. VINCE HUX ..ttt et e e e et e e e e e e e e e nnna e e e e e snnneeeeaas
McCune Audio Video Lighting

222 Ramona Street, Suite 1

Monterey, CA 93940

DI Dan BOGEY e e
Computer Science Dept., Code CS/DB

Naval Postgraduate School

Monterey, CA 93943

82

